
The Ultimate Guide to

Automation Testing

Joe Colantonio | TestTalks | Guild Conferences

Joe Colantonio

The Ultimate Guide to Automation Testing:
74 Resources, Tools & Best Practices for
Test Automation

Traditionally, during regression testing, a manual tester will take an existing test case procedure
and execute it step by step. This can be time-consuming and also error-prone since it is done by
hand.

Because of the reasons above, to save time, many companies try to take their manual test cases
and convert them to an automated test case. An automated test tool then executes the test steps
automatically without human intervention.

Sounds easy, but there are many pitfalls teams encounter when starting their test automation
journey.

 In this tutoral I will address the most common automation issues folks face and hopefully help
you begin your automation project off right.

This is a long guide, so here's an overview of what we're going to cover:

What Is Automation Testing?

Issues With Manual Testing

Why Is Automation Testing Necessary?

Automation Testing Considerations

Automation Testing Pitfalls

Automation Is a Team Effort

Tests That Should Be Automated

ROI: The Cost of Test Automation

What Shouldn’t Be Automated?

What Is an Automation Testing Framework?

Automation Testing Design Patterns

Test Automation Process

https://simpleprogrammer.com/author/joecolantonio/

Test Automation Best Practices

How To Pick an Automation Testing Tool

Test Automation Metrics

Automation Testing Frameworks and Tools List

API Automation Test Tools List

Run Your Automated Test in the Cloud or on Mobile Devices

Automation Test Management Tools List

Automation Testing Courses

Test Automation Conferences

Let’s start at the beginning by defining automation testing.

What Is Automation Testing?
Functional automation testing uses tools designed specifically for automation to emulate a user
interacting with an application and verifying test steps using programming assertions.

Many folks also call these tests automation “checks” or automated checking.

https://joecolantonio.com/testtalks/47-richard-bradshaw-can-automation-do-actual-testing/

This distinction is made to remind testers that automation and the implementation of automation is
a checker—it doesn’t replace your testing strategy. An automated test is also, in a sense, dumb in
that it can test only what you tell it to test; if you don’t assert it, it doesn’t get checked.

Also, it’s important to remember that “automation” does not apply to just user interface (UI) end-
to-end tests. In fact, I would say that you get more benefit from a lower-level automated test, like
a unit test, than you do from a big bloated test suite of end-to-end tests.

Before we take a more in-depth look at automated testing, let’s touch on some problems with
manual testing.

Issues With Manual Testing
There are many reasons why having a testing strategy that relies heavily on just manual testing
causes issues. Here are a few:

Automation testing can help.

But one of the first hurdles you might face when introducing automated testing to your
organization is the false belief that automation can replace all your testers and tests with
automation.

Here’s the deal:

Automation Testing Does Not Replace Testers.

Some people assume because a test activity is automated, that means it replaces human testers.
In fact, however, it’s the opposite. Automated tests are great for running tests precisely and
quickly, but they in no way replace human testers.

Automation tests are also great for running the same steps over and over again, but they don’t
think.

I like to think of automation in the way that Peter Thiel explains it in the “Man and Machine”
chapter of his book Zero to One :

“Computers are complements to humans, not substitutes. The most valuable businesses of the
coming decades will be built by entrepreneurs who seek to empower people rather than try to

make them obsolete.”

Although we can agree that automation testing does not replace other testing activities, with
today’s software development environment and continuous integration practices, it is critical and
cannot be ignored.

So what are some reasons for using automated tests?

Why Is Automation Testing Necessary?

http://amzn.to/2HTrgit

Practices like continuous integration and delivery require tests that run quickly and reliably. Lots of
manual tests will stop your ability to achieve velocity with your software development.

I’d go so far as to say that in today’s modern development environment, we couldn’t succeed
without automation.

Although the main reason teams try to create automated tests is to save the company both time
and money, it’s also important to give developers quick feedback so that when they check in code,
they are alerted as soon as possible that the change they checked in broke something.

Some other reasons for automated testing are:

While these are good reasons for automation, many folks fail to factor in the amount of time and
money it takes to maintain sizeable automated test suites.

So are there any other downsides to creating automated tests? What’s the real story?

Automation Testing Considerations

Since automated tests usually rely on programming languages for their creation, automation
becomes a full-blown development effort. What you are doing is developing a piece of software to
test another piece of software.

Automation testing is difficult and complicated, just like most other development software projects.
It also presents many of the same issues other software programs do. Treating your automated
code just like your development code is essential. Follow the same processes and best practices
you would use for any other software development project.

To learn more, John Sonmez covers many of these best practices in his awesome Pluralsight
course Creating an Automated Testing Framework With Selenium .

Automation Testing Pitfalls
Teams often claim that automation testing “doesn’t work.” But this attitude is usually caused by
poorly designed test automation more than anything else.

If you keep the issues listed below in mind as you create your test automation framework, you can
avoid many of these automation pitfalls ahead of time.

Many issues are caused by setting unrealistic goals, like, for example, having a goal of reaching
100% UI automated testing coverage. Teams often believe that automation tests will find more
new defects, so they have a false sense of security. Your automation is only as good as your
tests.

Teams also underestimate the amount of time it takes to maintain automation. They’ll often create
large, end-to-end tests, but tests should be atomic so that when they fail, you know why.

Several other common issues that teams face are:

Automation Is a Team Effort
For automation to be successful in an organization, you need to educate everyone on the team as
to what the expectation should be for your testing. It’s also critical that you create a whole team
approach to your automation efforts, meaning regardless of a person’s role on the team,
development and testing (and ultimately, delivering a feature) requires a total team effort.

Testing shouldn’t be an activity that is done only at the end of a sprint by a designated tester.

Quality needs to be baked into the software from the beginning, not after the fact. The only way to
do this is to have everyone working toward making the application under development as testable
as possible. This takes the whole team working together to deliver a quality product.

Many failures I see with automation are not caused by technical issues, but rather by a company’s
cultural issues.

Remember—automation is a time-consuming test activity. You want to use it only when it makes
sense. Other testing activities, like exploratory-type work, should be encouraged.

Automation is just one of many types of test activities that can be used by testers.

At this point, another common question I’m frequently asked is, “Which tests should be
automated?”

Tests That Should Be Automated
The biggest problem I usually see is that teams start off trying to automate everything. The
problem is that not everything is automatable. When planning which test cases to automate, you
should look for tests that are deterministic, don’t need human interaction, are hard to test
manually, and need to run more than once.

You should also seek to automate any manual process that will save engineers time (not
necessarily an official “testing” process), along with tests that focus on the money or risk areas of
your application.

Other tests that are useful to automate are unit tests, as well as tests that run against different
data sets, focus on critical paths of your application, need to run against multiple builds and
browsers, and are used for load/stress testing.

The more repetitive the execution is, the better candidate a test is for automation testing.
However, every situation is different.

Ultimately, you should consider using automation for any activity that saves your team time. It
doesn’t have to be a pure testing activity; you can leverage automation to help reduce any time-
consuming activity found anywhere in the software development lifecycle.

At this point, some of you may be asking, “What is the return on investment (ROI) of test
automation?”

ROI: The Cost of Test Automation
Determining the ROI of your automation testing efforts can be tricky. Here is a common
calculation some folks use to get a rough estimate of their test automation costs. This can also
help you decide whether a test case is even worth automating as opposed to testing it manually.

Automation Cost = how much the tools cost + how much the labor costs to create an automated
test + how much it costs to maintain the automated tests

Consequently, if your automation cost calculation is lower than the manual execution cost of the
test, it’s an indicator that automation is a good choice.

Moreover, ROI quickly adds up with each re-run of your automated test suite.

Because it’s critical that you get a good return on your test automation investment, there are some
things you shouldn’t automate.

What Shouldn’t Be Automated?
There are exceptions to everything, of course, but in general, you may not want to automate the
following test case scenarios:

In addition to what not to automate, another element of a successful automation project is having
an automation framework.

What Is an Automation Testing Framework?

I like to break down an automation testing framework into specific areas of concern, or what I call
the “four Ps” of an automation framework: people, planning, process, and performance.

The first one is the people aspect of a test automation framework.

People

As we already covered earlier, you want to make sure that you have set the expectations of your
managers and team about your automation strategy. To help ensure that your automation is
collaborative and a whole team effort, I recommend that you include automation on your sprint
team’s definition of done.

The next stage is the planning piece of your automation framework.

Planning

Before writing one line of code, always check to see if there is an existing library or tool you can
use before inventing your own. Break your automation framework into abstraction layers so that if
anything changes, you just need to make the change in one place. Using established automation
testing design patterns like the ones we cover later in this post should be part of the planning
stage.

Separating your tests from your framework will also help when you have to make changes to your
framework.

Also, plan on making your methods and utilities reusable to avoid code duplication. Making your
test and code as readable as possible (they should read like English) will go a long way to prevent
confusion and code duplication.

Finally, when planning your test, it's important to be aware of what test data your tests need.
Many times, tests run against different environments that might not have the data you expect, so
make sure to have a test data management strategy in place. Including support for mocking and
stubbing in your framework can also help with some test data issues.

Process

Having a process in place that holds team members accountable for automation is another vital
piece of a framework. Since automation is just like any other development project, make sure to
use the same process and best practices that developers already follow, like using version control
and performing code reviews on all automated tests.

Performance

Always start your automation framework with the end in mind. Tests need to be reliable and
maintainable. They also should run as fast as possible.

Along these lines, make sure that your developers are creating unique IDs for each element that
you will have to interact with within your tests. Doing this will help you avoid resorting to lousy
automation practices like relying on a coordinate-based way to communicate with an element.

Another top killer of test automation script performance is the failure to use proper
synchronization/wait points in your tests. Too many hard-coded waits will slow down your test
suite. Use the preferred explicit wait method for synchronization.

As you write your test scripts, think about how they would perform if you had to run in parallel.
Thinking about possible parallel issues beforehand will avoid problems when you start to scale
the running of your test suite again on a grid or a cloud-based service like Sauce Labs .

To ensure that your tests are as preformatted as possible, refactor slow or poorly written code
whenever possible. Including reporting and logging in your framework will help you quickly identify
poorly running code.

To make sure that teams follow all these guidelines, determine a strategy for training and
retraining your framework users.

That’s not all …

https://www.joecolantonio.com/2014/04/01/the-1-killer-of-selenium-script-performance-and-reliability/
http://signup.saucelabs.com/signup/trial?campid=7011M000001N5qt&utm_campaign=free+trial&utm_medium=website&utm_source=testtalks

Automation Testing Design Patterns
It’s a given that your applications are going to change over time. And since you know change is
going to happen, you should start off right from the beginning using best practices or design
patterns. Doing so will make your automation more repeatable and maintainable.

Here are some common automation testing design patterns that many teams use to help them
create more reliable test automation.

Page Objects
One popular strategy to use when creating your test automation is to model the behavior on your
application. Creating simple page objects that model the pieces of your software that you are
testing against can do this.

https://github.com/SeleniumHQ/selenium/wiki/PageObjects

So, for example, you would write a page object for login or a page object for a homepage.
Following this approach correctly makes use of the single responsibility principle.

If anything changes—say, an element ID—you just need to go to one place to make the change
and all of the tests that use the page object will automatically pick up the changes without you
doing anything else. The test code needs to be updated in only one place.

Page objects also hide the technical details about HTML fields and CSS classes behind methods
that have easy-to-understand names. Being mindful when naming your methods has the extra
benefit of helping to create a nice readable test application programming interface (API) that a
less technical automation engineer can quickly start using for automation.

Screenplay Pattern
Page objects are a good place to start making your test maintainable, but if you’re not careful,
they can grow out of control over time. The Screenplay pattern takes page objects and chops
them down into really tiny pieces. Some testers tell me that this has made their tests much more
maintainable and reliable.

Another significant benefit is that it makes test scripts more readable.

Ports and Adapters
The ports and adapters design strives to make sure you are using the single responsibility
principle so that an object should do only one thing and have one reason to change.

When you apply this to test automation, make sure to decouple your test code to allow you to
swap slow components with fast simulators so that you can run your test and the app you’re
testing in the same process.

Remove all networking and input/output so nothing is slowing down the test suite. Of course, this
is not easy to do, but the more you try to do this when creating UI automation, the better off you
will be.

Presenter First
Presenter First is a modification of the model-view-controller (MVC) way of organizing code and
development behaviors to create completely tested software using a test-driven development
(TDD) approach.

I first heard of this pattern when interviewing Seb Rose, one of the contributors to the Cucumber
project and author of The Cucumber for Java Book .

He mentioned that if you draw out the MVC pattern as blocks and arrows, you can see that the
view, which is your UI, has well-defined channels of communication with the model and the
controller. If you can replace those during runtime with models and controllers that your test
creates and controls, then there is no reason why you can’t just test that the UI behaves in the
way that you want.

https://ideas.riverglide.com/page-objects-refactored-12ec3541990#.ekkiguobe
https://spin.atomicobject.com/2013/02/23/ports-adapters-software-architecture/
https://atomicobject.com/resources/presenter-first
https://simpleprogrammer.com/software-design-patterns-hiding/
https://joecolantonio.com/testtalks/53-seb-rose-cucumber-for-java-keeping-your-bdd-cucumbers-sweet/
http://amzn.to/2roj0wD

You can also set your model and controller to mimic all sorts of odd behaviors, like a network
going down.

Test Automation Process

Test Automation Best Practices

Here are some high-level good automation practices you should follow in more detail:

Atomic Test
An atomic test is a strategy for ensuring that each test is entirely self-contained. That is, it should
not depend on the outcome of other tests to establish its state, and another test should not affect
its success or failure in any way.

Also, when an automated test fails, you need to know why. Having a well-named atomic test that
tests only one thing will help you quickly identify what broke if your test fails.

Furthermore, you should endeavor to get feedback to your developers as quickly as possible, and
the best way to do that is with a fast, well-named test.

This is also critical if you plan on running your automation test in parallel in a Selenium Grid .

Test Sizing
Test size matters because tests need to run quickly.

At this point, many people visualize a traditional test pyramid, which has unit tests as its base,
integration tests in the middle, and graphical user interface (GUI) tests at the top.

But I think more in terms of test size. By test size, I’m referring to tests that are faster than others.

While I understand the need to run UI tests if you have to create one, make it as fast as possible.

Readability
A quick point on test code readability—did you know that developers spend more time reading
code than actually writing it?

It is rare that the person who wrote code will also be the one that needs to modify it. Even worse,
how many times have you written code only to come back to it months later and have no idea
what it is doing?

Since, as we mentioned, automation code is software development, you should create your test
code with the reader of the code in mind—not the computer.

http://www.joecolantonio.com/2014/10/07/selenium-grid-how-to-setup-a-hub-and-node/
https://martinfowler.com/bliki/TestPyramid.html

This will help not only to make your test more maintainable, but also will help ensure that you do
not duplicate code because you didn’t know what an existing piece of code was doing.

This might seem like a minor issue, but ignore readability of your automation test at your peril.

The importance of code readability really hit home for me after watching Cory House’s PluralSight
course called Clean Code: Writing Code for Humans .

Testability
Testability needs to be baked into our applications right from the start. As a regular part of sprint
planning, developers should be thinking about how they can make their application code more
testable. They can do this by providing things like unique element IDs for their application fields
and APIs to help create hooks into their application(s) that can be used in their automated tests.

They should also be thinking about how any code changes they make to the application are going
to impact existing automated tests, and plan accordingly.

If you don’t do this, you’re not going to be successful with automation for very long.

Remember, you can’t automate that which is not testable.

Stable Environment
This one is a really common hindrance for many teams with their automation efforts.

Without a stable test environment that is always in a known state, it will be tough for your teams to
make progress with their automation efforts.

Tests failing due to environmental issues rather than actual application issues will cause your
teams to lose confidence in your test feedback quickly.

Once teams start ignoring automation results, your test efforts become useless.

Some tools that can help create more stable and repeatable environments are Docker, Vagrant,
and Skytap.

http://pluralsight.pxf.io/c/1222492/424552/7490
https://www.docker.com/
https://www.vagrantup.com/
https://www.skytap.com/

How To Pick an Automation Testing Tool
There is no “correct” test tool for automation testing. Ultimately, it all depends on your team’s
unique needs and skill set.

I always recommend that you run a two-week proof of concept (POC) for each tool that you are
considering and include your team’s feedback in the process before committing to a tool.

The first place to start is to look at the product roadmap and make sure the tools you select will
handle future features and technologies. To avoid future compatibility issues and tedious
framework refactoring due to false notions, don’t skip this step.

Next, you should evaluate the cost, including maintenance. If you plan on having your whole team
help out with the automation effort, make sure to use a tool that leverages the same tools and
languages your developers use.

Don’t just assume a tool will work for you. Create a small POC for each tool and get team
feedback before committing to anything. Ask the team: Is the tool extensible? How easy is it to
use and get started? Does it provide reporting and debugging capabilities? Does it recognize all
the objects in your application? Can it integrate with other tools like version control, test
management tools, and continuous integration tools?

Most importantly, find out if the tool has an active user base and select tools that other companies
are using. You don’t want to select an open-source solution that is not actively maintained by the
community. You may need to ask how much training it will take to get your teams up to speed with
the tool. Finally, determine how easy is it to hire folks that have the skills needed to create your
automated tests.

Test Automation Metrics
Coming up with metrics that teams can use to make sure they are on track is tough. These should
be used just as a quick way to monitor your team’s progress and shouldn’t be used as hard and
fast rules.

Mean Time to Diagnosis (MTD)—How long does it take you to debug a failing automated test? A
high MTD is an indicator that your automated test code is not high-quality.

Bugs Found by Automation—This can be helpful to determine how much value your automation
efforts are bringing.

Flaky Rate—Ideally, this should be zero, but this is a good indicator to know if your automated
tests are reliable or not.

https://www.youtube.com/watch?v=ckd6Afp1GOo

Automated to Manual Ratio—The more manual tests you have, the longer it will take to tell if
your application is ready for release. This helps you keep a pulse on how long your release efforts
will take. It also enables you to gain visibility into whether teams are automating (or not
automating) the right things.

Automation Testing Frameworks and Tools

Open-Source Tools
Selenium

Appium

Watir

Sikuli

WinAppDriver

White Framework

AutoIt

Serenity

Gauge

Sahi

Robot Framework

RedwoodHQ

Galen Framework

Cypress

Vendor-based Automation Test tools
Applitools

LeanFT

UFT

Microsoft Coded UI

TestComplete

IBM Rational Functional Tester

Tricentis

http://www.seleniumhq.org/
http://appium.io/
http://watir.com/
http://www.sikuli.org/
http://github.com/Microsoft/WinAppDriver
https://github.com/TestStack/White
https://www.autoitscript.com/site/autoit/
http://thucydides.info/docs/serenity-staging/
https://gauge.org/
http://sahipro.com/sahi-open-source/
http://robotframework.org/
http://redwoodhq.com/
http://galenframework.com/
https://www.cypress.io/
https://applitools.com/
https://software.microfocus.com/en-us/products/automated-continuous-testing-integration-delivery-tools/overview
https://software.microfocus.com/en-us/products/unified-functional-automated-testing/overview
https://docs.microsoft.com/en-us/visualstudio/test/use-ui-automation-to-test-your-code
https://smartbear.com/product/testcomplete/features/
http://www-03.ibm.com/software/products/EN/FUNCTIONAL
https://www.tricentis.com/

Worksoft

Testplant

Ranorex

Progress

Automation Anywhere

TestIm

API Automation Test Tools
Open-source API tools
Rest-Assured

RestSharp

Postman

SoapUI

Fiddler

how to get started with Fiddler

Karate

Citrus Framework

Vendor API Tools
SoapUI Pro

UFT API

Test Execution Report Tools
Allure

Run Your Automated Test in the Cloud or on Mobile Devices
Here are some vendors that allow you to save a ton of time by running your test in the cloud and
on multiple OS, devices, and configurations. Get rid of the headache of having to maintain your
own in-house lab/grid.

Sauce Labs

Perfecto

BrowserStack

Automation Test Management Tools
Zephyr

QASymphony

https://www.worksoft.com/
https://www.testplant.com/
https://www.ranorex.com/
https://www.progress.com/
https://www.automationanywhere.com/
http://www.testim.io/
http://rest-assured.io/
https://github.com/restsharp/RestSharp
https://www.getpostman.com/
https://www.soapui.org/open-source.html
https://www.telerik.com/fiddler
https://www.joecolantonio.com/2014/12/09/getting-started-debugging-fiddler/
https://github.com/intuit/karate
https://www.citrusframework.org/
https://www.soapui.org/professional/soapui-pro.html
https://software.microfocus.com/en-us/products/unified-functional-automated-testing/overview
http://allure.qatools.ru/
https://saucelabs.com/
https://www.perfectomobile.com/
https://www.browserstack.com/
https://www.getzephyr.com/
https://www.qasymphony.com/

Automation Testing Courses
Finally, here’s a list of my favorite automation testing courses:

Automated Web Testing with Selenium

Creating an Automated Testing Framework With Selenium

Quick Guide to API Testing with HP’s Unified Functional Testing

Test Automation with CodedUI

Selenium 2 WebDriver Basics with Java

Complete Selenium Webdriver with C# – Build a Framework

Robot Framework

The Java Selenium Guidebook by Dave Haeffner

Test Automation Conferences
Automation Guild - an online conference dedicated 100% to automation testing

PerfGuild - an online conference dedicated 100% to performance testing.

TestingGuild - an online conference dedicated 100% to Testing/QA

AiSummitGuild

SeleniumConf

STPCon

SauceCon

Joe Colantonio
Joe is the founder of JoeColantonio.com, Test Talks and Guild Conferences : a blog, podcast and
online conference platform dedicated to test automation. He is also a Pluralsight author. Simply
put Joe’s mission is to help individuals and organizations to succeed with creating automation
awesomeness

http://pluralsight.pxf.io/c/1222492/424552/7490
http://pluralsight.pxf.io/c/1222492/424552/7490
http://pluralsight.pxf.io/c/1222492/424552/7490
http://pluralsight.pxf.io/c/1222492/424552/7490
http://getdpd.com/cart/hoplink/24708?referrer=coikxejawk8cso
https://automationguild.com/
http://perfguild.com/
http://testingguild.com/
http://aisummitguild.com/
https://www.seleniumconf.us/
http://www.stpcon.com/
https://www.joecolantonio.com/
http://www.testtalks.com/
http://guildconferences.com/

JOIN THE GUILD COMMUNITY

JOIN US TODAY

If you feel overwhelmed with staying up to date with all the latest in
automation testing, tools and best practices check out my annual online

conference dedicated 100% to just automation testing — Automation Guild.

https://automationguild.com/

