
https://automationguild.com	

	
Shashikant Jagtap - Hands On XCUITest for iOS apps

	

Shashikant	:	 Hello	everyone.	Welcome	to	Automation	Guild	Conference	session	on	Getting	
Started	With	XCUITest.	My	name	is	Shashi.	And	in	this	session	we'll	be	going	
through	historical	testing	in	iOS	World.	Then	we	will	discuss	rise	of	third	party	UI	
automation	tools	like	Appium	and	Calabash.	Then	we	will	discuss	about	the	
problems	that	have	been	created	by	the	third	party	UI	automation	tools.	And	
finally,	we	will	talk	about	Apple's	own	UI	testing	framework,	also	known	as	
XCUITest.	And	how	we	can	use	XCUITest	for	better	iOS	development.		

	 So	let's	talk	about	a	little	bit	of	history	of	iOS	development.	So	in	the	past,	iOS	
teams	usually	very	small	having	one	or	two	iOS	developer.	And	all	the	key	
activities	had	been	handled	by	developers	themselves.	So	there	wasn't	any	need	
to	have	a	dedicated	QA	team	or	QA	person	to	test	the	applications.	It	may	be	
because	applications	were	not	that	complex	and	companies	might	not	be	
earning	that	much	revenues	with	their	iOS	apps.		

	 But	in	recent	days,	the	team	has	bene	drastically	changed.	Now,	businesses	are	
adopting	the	Mobile	First	approach.	And	they	have	realized	the	importance	of	
having	iOS	apps	for	their	businesses.	So	as	a	result,	they	started	hiring	more	and	
more	iOS	developers,	so	the	team	started	growing.	And	that	initiates	need	of	
having	QA	or	QA	team	to	test	the	iOS	apps.		

	 Although	the	team	has	grown	in	size,	iOS	developers	has	grown	in	size,	there's	a	
QA	team	as	well,	but	the	iOS	development	and	testing	practices	still	remaining	
unchanged.	Although	the	technology	has	been	[inaudible	00:02:14]	a	lot	in	
terms	of	iOS	like	Apple	has	launched	[inaudible	00:02:19]	and	the	testing	
framework	has	been	growing	a	lot,	but	the	testing	usually	in	iOS	team	hasn't	
grown	a	lot.	Some	companies	still	develop	the	app	in	silos	and	then	hand	it	over	
to	the	QA	team	for	testing.	And	for	most	of	the	teams,	there's	no	CI/CD,	TDD,	
BDD	or	any	best	Agile	Development	Practices	implemented	within	iOS	
development.		

	 So	developer	used	to	develop	application	using	their	local	machines,	and	then	
build	the	application,	and	hand	it	to	the	QA	team	for	testing.	Then	the	QA	used	
to	test	those	things	manually.	And	there's	heavy	manual	testing	involved	during	
this	phase.	So	the	regression	cycles	might	be	a	week	or	weeks	or,	in	some	cases,	
it	would	be	months.	And	usually,	it	takes	like	months	to	release	iOS	apps	to	the	
users.	So	this	approach	is	clearly	not	suitable	for	fast	paced	competitive	world.	
As	you	might	say	the	competitors	might	have	good	practices,	agile	development	
practices	so	that	they	can	release	the	feature	as	soon	as	developed.	So	there	
might	be	a	solution,	some	sort	of	solution	to	solve	these	problems.		

ShashikantFirstSection Page 2 of 5

	 So	community	has	realized	this	is	a	problem	with	the	testing	in	iOS	world.	And	
they	badly	need	a	tool,	which	is	a	Selenium	like	tool	in	iOS	world.	So	they	
started	developing	the	tools	like	Appium,	Calabash,	KIF,	Frank,	etc,	and	many	
more	tools	started	coming	into	the	market.	So	basically,	these	tools	are	
developed	using	the	Apple's	native	technologies	like	instrumentation	or	real	
world	automation.	And	they	take	these	technologies	as	a	base	and	they	write	a	
Wrappers	around	those	technologies.	And	they	call	themselves	Mobile	Testing	
Frameworks.	But	they	are	just	Wrappers	around	Apple's	native	technologies.		

	 So	as	QA	started	using	those	tools	to	avoid	the	heavy	manual	testing	...	So	
instead	of	tapping	on	the	simulator	manually,	these	tools	allows	QA	engineers	
to	write	some	sort	of	script	in	languages	like	Ruby,	Java,	Python,	C	Sharp.	And	
then	QA	engineers	can	write	a	script	to	tell	simulators	or,	in	some	cases,	real	
devices	to	tap	on	those	screens.	So	instead	of	having	the	people	tapping	on	the	
screen,	now	we	have	the	scripts	tapping	the	simulators.	So	now	QA	started	
spending	more	time	on	maintaining	their	tests.	And	they	are	no	longer	testing	
the	real	iOS	tests,	or	they're	not	doing	any	explorative	testing	to	find	the	issues,	
the	real	issues	in	iOS	apps.	So	they	spend	time	on	maintaining	their	tests	in	
Ruby,	Java,	and	some	other	languages.	And	this	basically	created	a	huge	
technology	gap	because	developers	used	to	develop	application	in	Swift	or	
Objective-C.	And	the	QA	team	started	tracking	their	tests	in	Ruby,	Java,	Python,	
or	some	other	crazy	languages.		

	 So	one	of	the	other	things	that	the	tools	like	Appium	or	Calabash	got	really	
popular	and	[inaudible	00:06:17]	by	most	of	the	companies	because	of	the	cross	
platform	support.	Because	we	can	write	a	test	both	for	iOS	and	Android	
platform	using	those	tools.	And	there's	no	need	to	have	two	different	tests	
made.	And	we	can	get	both	platforms	automated	using	those	sort	of	tools.	But	
to	me,	this	approach	in	very	dangerous.	It	can	help	to	deliver	the	project	on	
time,	but	any	cross	platforms	solutions	are	never	permanent.	Either	Apple	or	
Google	can	break	it	one	day.	And	you'll	realize	that	the	time,	effort,	and	the	
money	you	put	in	on	those	cross	platform	frameworks	are	just	gone	in	vain.	And	
once	these	tools	are	[inaudible	00:07:08]	by	Apple	or	Google,	then	you	probably	
have	no	other	option	to	start	from	scratch	again.	So	you	have	to	be	very,	very	
careful	about	choosing	those	frameworks	because	you	have	to	remember	that	
the	cross	platform	solution	...	Any	cross	platforms	solutions	is	just	temporary	
hack	that	you	are	going	to	implement.	And	you	are	getting	those	hacks	into	your	
company	or	business	as	that's	more	dangerous	than	having	this	usually	common	
[inaudible	00:07:41]	approach.		

	 So	coming	back	the	problems	that	has	been	created	by	UI	automation	
frameworks.	So	the	first	one	is	a	technology	barrier.	As	we	discussed	earlier,	the	
QA	team	is	writing	the	script	in	Java,	Ruby,	or	Python	and	the	developer's	
writing	the	application	coding	in	Swift	or	Objective-C.	So	the	QA	team	has	no	
idea	how	the	application	is	being	developed	and	the	developer	has	no	idea	
what's	happening	in	that	QA	team.	So	this	proves	a	huge	technology	barrier.	
Also,	having	those	technical	barriers,	we	can't	put	source	code	like	a	test	code	
and	the	production	code	into	the	same	repository	because	they	are	two	

ShashikantFirstSection Page 3 of 5

different	technologies.	So	the	most	of	the	companies	write	development	code	
or	production	code	in	one	repository	and	put	the	test	code	in	other	repositories.		

	 Implementing	the	continuous	integration	or	continuous	delivery	practices	
within	certain	crazy	technology	differences	is	very	hard.	You	can't	just	build	in	
Swift	and	Java	to	get	your	continuous	integration	environment.	So	it's	very	hard	
to	implement	any	agile	development	practices	like	CI/CD	or	TDD	or	BDD	or	we	
can't	work	in	collaboration	because	of	this	technology	barrier.		

	 So	another	thing	is	the	tests	produced	by	those	third	party	UI	automation	tools	
are	very	brittle.	And	they	are	usually	slow	because	they	are	just	a	Wrapper.	
They	need	to	first	...	They	can	pass	[inaudible	00:09:26]	technologies	and	then	
they	launch	simulator	and	do	the	stuff.	So	tests	are	usually	brittle	and	very	slow.	
Another	thing	is	those	frameworks	usually	need	a	pre	built	app.	So	basically,	we	
have	to	build	an	app	in	[inaudible	00:09:46]	app	format	or	in	Appium	format.	
And	then	we	have	to	pass	that	app	in	the	Appium.	And	then	Appium	or	Calabash	
will	take	that	app	and	then	start	testing	that	app.	That	means	we	can't	work	in	
parallel	with	development	team.	So	we	can't	really	start	testing	unless	the	
developer	finished	this	feature.	So	it's	very	hard	to	find	that	parallelism	between	
development	and	testing.	So	it's,	again,	kind	of	[inaudible	00:10:21]	technique	
that	we	have	to	wait	for	application	of	feature	to	be	done	and	then	we	can	start	
testing.	So	this	approach	is	unsuitable	as	well.		

	 So	another	thing	is	with	those	UI	automation	framework,	Apple	can	break	those	
tools	any	time.	Whenever	Apple	change	the	API,	these	tools	can	break.	I	think	
that	iOS	10	is	a	good	example	of	that.	So	in	iOS	10	release,	Apple	has	duplicated	
the	instrumentation	technology.	And	all	the	third	party	tools	like	Appium,	
Calabash	that	build	on	those	technologies	has	got	broken	because	of	that.	They	
tried	to	get	back	with	some	hacks.	I	think	some	tools	are	already	dead	and	some	
tools	are	still	there	just	alive	with	some	hacks.	But	these	tools	can	be	broken	by	
Apple,	or	in	case	of	Android,	by	Google,	anytime.		

	 Another	thing.	Whenever	they,	Apple,	release	new	feature	or	new	testing	
feature,	they	have	to	implement	that	feature	into	the	Wrapper	tools	like	
Appium	or	Calabash.	They're	all	[inaudible	00:11:31]	with	Apple's	new	feature,	
new	testing	features,	and	they	need	to	implement	them	into	those	tools.	And	
sometimes,	it	becomes	very	difficult	to	implement	the	different	bindings.	For	
example,	someone	can	build	it	with	a	Java	binding,	but	not	in	Ruby	binding.	So	
you	know,	it's	always	time	consuming	to	get	Apple's	latest	testing	features	into	
those	frameworks.	And	we	have	to	wait	to	get	these	things	implemented	in	that	
Wrapper	technologies,	and	then	we	can	use	into	our	project.	So	it	is	a	very	non	
process.		

	 So	we	can't	use	the	features	that	Apple	has	published	straight	away.	Again,	the	
silos,	so	developers	and	testers,	can't	work	together	with	those	tools.	And	all	
such	kind	of	approaches	like	causing	the	damage	to	iOS	development	than	good.	
So	the	whole	approach	of	[inaudible	00:12:31]	the	automated	simulators	with	
those	framework	are	not	feasible.		

ShashikantFirstSection Page 4 of 5

	 So	we	have	discussed	a	lot	of	things	about	problems	with	those	third	party	UI	
automation	tools.	So	one	of	the	potential	solution	is	Apple's	own	Xcode	UI	
Testing	framework,	also	known	as	XCUITest.	This	framework	has	been	launched	
by	Apple	in	2015.	You	should	definitely	watch	this	[inaudible	00:13:00]	on	Xcode	
UI	testing	to	understand	this	from	scratch.	So	basically,	XCUITest	is	a	UI	testing	
framework	embedded	within	Xcode,	which	allows	us	to	write	a	UI	test	for	iOS	
apps	in	Swift	or	Objective-C.	So	one	of	the	benefits	of	using	XCUITest	is	it's	way	
faster	than	all	these	Wrappers	that	we	discussed	before.	So	basically,	it	doesn't	
have	to	wait	for	anything.	So	it	just	build	an	application	and	start	running	the	UI	
test.	So	it's	way	faster	than	the	Wrapper	tools.		

	 Another	thing	is	we	don't	have	to	wait	until	a	feature	is	done.	So	we	can	take	
the	code	from	any	branch.	We	can	build	the	target	app.	And	we	can	start	testing	
in	parallel	with	development.	Another	thing	is	it's	very	easy	to	plug	into	the	CI	
because	we	use	the	same	technology	testing	framework	from	Apple	called	
XCTest	for	unique	testing	as	well	as	UI	testing.	So	we	can	easily	plug	XCTest	
framework	with	our	CI	process.	It	makes	the	iOS	developers	happy	because	now	
developers	understand	what's	going	on	in	the	QA	team	or	what	our	application	
is	really	testing.	They	can	contribute	to	the	test	code.	They	can	add	some	value	
to	the	tests.	And	they	can	see	the	benefit	of	having	[inaudible	00:14:32]	to	test	
development	working	process.		

	 So	there	are	lots	of	benefits	XCUITest	can	produce	within	iOS	10	because	if	the	
developer	is	getting	involved	into	those	kind	of	processes,	then	it	makes	it	very	
easy	for	the	QA	team	to	get	some	help	from	them,	get	more	advice,	make	the	
framework	more	stable	and	solid	by	taking	their	help.	However,	if	you	try	to	go	
for	XCUITest,	you	should	remember	some	few	things.	We	can't	do	the	cross	
platform	things	in	here	because	the	XCUITest	is	only	supposed	to	work	with	iOS	
applications.	You	can't	do	it	for	Android	or	some	other	platform.	It's	just	for	iOS.	
Another	thing,	I	think	potentially	this	is	a	major	thing	because	the	QA	engineers	
need	to	learn	Swift.	And	in	most	of	the	cases,	QA	engineers	are	mostly	from	
Java	background	or	C	sharp	background.	And	the	world	is	full	of	the	Java	
automation	guys.	You	have	to	spend	your	time	to	learn	Swift.	And	you	have	to	
make	yourself	familiar	with	the	development	platform	and	get	involved	with	
that.		

	 Another	thing	is	XCUITest	is	still	new.	And	you	might	find	some	open	bugs	with	
that.	But	there	are	not	major	critical	bugs.	We	can	still	use	the	functionality	of	
XCUITest.	But	there	are	some	minor	things	here	and	there	floating	around.	But	
sooner	or	later,	it's	been	fixed	by	Apple.		

	 So	why	should	you	chose	XCUITest?	The	main	thing,	it's	maintained	by	Apple.	So	
there's	no	chance	that	anyone	can	break	these	tools	apart	from	Apple.	Also,	we	
can	get	the	new	features,	new	testing	features	straight	into	our	workflow	as	
Apple	updates	their	tools.	So	we	don't	have	to	wait	for	someone	to	implement	
in	the	third	party	tools	or	something	like	that.	So	we	can	get	these	features	
straight	away.	Another	thing	is	it	speeds	up	the	iOS	development	because	we	
can	collaborate	with	the	developers	and	we	can	add	more	and	more	tests.	We	

ShashikantFirstSection Page 5 of 5

can	make	a	decision	what	to	test	or	what	not	to	test.	And	it	increases	the	
collaboration	between	QA	and	developers,	which	is	I	think	one	of	the	great	
advantages	of	having	XCUITest.		

	 And	by	using	XCUITest,	we	are	on	the	same	page	in	terms	of	the	technology.	So	
we	can	easily	adopt	the	best	agile	development	practices	like	a	TDD,	BDD,	
continuous	integration,	and	continuous	delivery.	And	we	can	set	up	the	release	
pipeline	to	just	deploy	the	apps	with	automation	and	the	practices	like	a	TDD	or	
BDD.	But	one	of	the	major	benefits	of	having	XCUITest	is	a	painless	device	
testing.	So	in	the	world	of	Appium	and	Calabash,	we	need	to	have	that	pre	
made	app	and	that	app	has	to	be	signed	by	some	provisioning	profiles.	And	
there's	lots	of	cosigning	activities	involved	in	that	process.		

	 So	with	XCUITest,	we	can	just	attach	the	devices	to	our	server.	And	if	you	have	
the	certificates	and	profiles	installed	on	the	server	machine,	then	it	takes	care	of	
all	these	things.	And	since	Xcode	8,	these	things	become	really	painless	because	
Apple	has	introduced	automatic	signing	feature	so	that	we	don't	have	to	worry	
about	all	these	crazy	certificates	and	provisioning	profiles.	So	it	has	been	all	
handled	by	the	Xcode	these	days.		

	 So	we	have	talked	a	lot	about	XCUITest	and	it's	benefit.	So	it's	time	to	show	you	
how	it	works	in	reality.	So	let's	dive	into	the	code	and	we'll	see	you	in	the	demo.		

	

	

