
https://automationguild.com	

Richard Bradshaw - Don't be SCARED of automated checks/tests

RichardBradshaw:	 Hello	and	welcome	to	this	Automation	Guild	2018	talk.	My	name	is	Richard	
Bradshaw,	also	known	as	the	Friendly	Tester.	You	were	probably	tuning	in	to	
expect	a	talk	titled	Don't	Be	SCARED	of	Automated	Checks.	When	I	submitted	
this	talk	to	Joe,	that	was	the	title	and	SCARED	was	the	acronym	I	was	going	for	
what	I'm	going	to	talk	about	today.	However,	upon	reflection	I	realized	that	
SACRED	might	fit	better.	The	talk's	exactly	the	same.	The	description	still	
matches,	however,	we're	going	to	go	with	the	title	of	Your	Automated	Checks	
are	SACRED.	SACRED	fits	a	little	better	for	me.	We	shouldn't	be	scared	of	
automation.	I'm	not	trying	to	put	people	off.	I'm	actually	trying	to	encourage	
more	people	into	it,	and	SACRED	just	seems	to	...	Just	fits.	We	want	to	treat	our	
checks	with	respect	and	they're	incredibly	important	to	the	team,	and	especially	
going	forward	a	lot	of	teams	are	already	getting	immense	value	out	of	their	
automated	checks,	and	I	hope	more	teams	going	forward	do.	

	 Also,	the	order	fits	it,	which	you'll	see	through	the	rest	of	this	talk.	SACRED	was	
the	result	of	me	spending	some	time	thinking	about	basically	anatomy	of	an	
automated	check.	What's	actually	the	make	up	of	a	check?	When	we	go	through	
and	we	sit	down	in	an	IDE	and	we	start	coding,	we	are	doing	far	more	than	we	
realize,	and	I	wanted	to	break	down	and	try	and	understand	what	these	were.	
The	result	of	that	was	these	six	letters.	Then	once	I	played	around	with	some	
words,	as	I	said,	I	ended	up	with	SCARED	and	then	I	changed	it	now	to	SACRED.	
The	talk,	we're	going	to	go	through	these	six	letters.	We're	going	to	look	at	what	
they	mean.	We're	going	to	look	at	who	should	be	involved.	We're	going	to	look	
at	when	you	should	be	involved,	and	we're	going	to	look	at	how	you	should	go	
about	doing	them,	and	why	it's	important	to	consider	these	things	in	our	
automated	checks.		

	 What	I'm	hoping	you'll	get	out	of	this	is	a	realization	for	the	skills	that	are	
actually	involved	in	creating	really	fantastic	automated	checks.	We're	very	
fixated	on	code	as	an	industry,	and	I	feel	that	we	need	to	focus	a	lot	more	on	
some	of	these	other	skills.	We're	pushing	some	very	good	testers	into	learning	
how	to	code,	and	potentially	as	Dot	Graham's	quote	that	she	stole	from	
someone	else,	I	can't	remember	who,	if	we	force	good	testers	to	code,	we'll	
gain	a	bad	programmer.	What	I	want	to	try	and	demonstrate	is	that	there's	
more	to	automated	checks,	there's	more	to	writing	those	checks,	creating	those	
checks,	thinking	about	them	than	knowing	how	to	code.	I	think	we're	in	danger	
as	an	industry	of	focusing	on	code	too	much.	

	 Also,	other	members	of	the	team	have	lots	to	contribute	to	some	of	these	areas,	
as	well	as	the	testers	who	don't	wish	to	code,	how	can	they	still	contribute	to	
automation	efforts?	They	really	can.	They	really,	really	can.	I'm	going	to	break	
this	down,	and	also	I'm	also	hoping	it	will	realize	for	those	who	have	been	
writing	automation	extensively	for	a	long	time,	get	a	realization	for	the	bits	that	
they	may	not	be	aware	of	they're	doing	and	now	they	have	a	way	of	tuning	in	

Richard Bradshaw Your Automated Checks Are Sacred Page 2 of 19

and	focusing	on	that	so	they	can	improve	overall.	Let's	get	into	it.	Let's	jump	
straight	into	S.		

	 Just	like	magic,	we're	back,	and	we've	now	got	a	new	slide.	Using	the	
whiteboard,	as	you	can	tell,	is	kind	of	in	homage	to	my	YouTube	channel,	
Whiteboard	Testing.	I	love	the	whiteboard.	It's	more	visual.	I	tried	sitting	at	my	
computer	and	talking	to	it	and	using	PowerPoint	and	something.	Didn't	really	
work	for	me,	so	we're	going	with	the	whiteboard	approach.	The	S,	the	S	stands	
for	state.	Why	is	the	state	important?	Well,	if	you	think	about	an	automated	
check,	we're	doing	some	behavior	on	the	UI	or	perhaps	we're	hitting	an	API	or	
even	if	it	was	at	a	unit	level,	we're	calling	some	kind	of	object,	and	therefore	we	
need	to	have	the	state	in	place.	For	example,	most	of	our	applications	are	driven	
by	data.	It's	data	that	makes	the	UIs	appear	as	they	are.	It's	data	that	makes	the	
APIs	return	what	they	do.		

	 If	we	can't	put	that	data	in	place,	therefore	we're	not	going	to	be	able	to	control	
our	checks	as	well,	so	we	have	to	think	about	state.	In	order	to	think	about	
state,	we	have	to	be	able	to	understand	how	our	feature	works,	everything	that	
goes	with	it.	What	data	[inaudible	00:04:11]	in	the	database,	what	tables	are	
used?	Does	it	call	third-party	APIs?	Where	does	it	get	all	this	data	from	that	
makes	the	UI	look	like	it	does,	or	makes	that	API	return	this	JSON,	because	it's	
that	that	we	then	do	our	assertions	on	later	on.	We	need	to	be	able	to	control	
it.	If	we	can	control	it,	we	can	then	make	our	checks	more	deterministic,	which	
means	we'll	always	have	the	same	results	every	time,	so	therefore	if	we	want	to	
always	have	a	100	users	when	we	do	our	automated	checks,	we	can	put	100	
users	there.		

	 If	we	need	a	user	who	lives	at	123	Test	Street,	we	can	make	one.	If	we	want	to	
see	what	the	system	behaves	like	with	no	users,	we	can	make	that	happen	if	we	
put	all	the	code	in	place	to	be	able	to	control	that	state.	As	I	said,	it's	the	data	
that	drives	the	interface,	which	is	why	we	have	to	consider	it	and	we	have	to	be	
able	to	control	it.	A	most	common	term	for	this	would	be	testability,	and	it's	
very	easy	to	think	about.	We	ask	ourselves	how	easy	is	this	feature	to	test?	I	like	
to	do	this	in	pre-planning,	I	like	to	ask	the	team,	"How	are	we	going	to	test	this	
feature?	How	am	I	going	to	test	this?"	Think	about	it	first,	we	always	have	to	do	
this	stuff	manually,	and	then	we	can	automate	it.	If	we	can	build	something	
upfront	to	help	us	test	it	initially,	when	we	come	to	automate	it,	it	should	be	
significantly	easier.		

	 The	when	for	me	is	always	at	feature	design	is	when	I	want	to	bring	this	up.	I	
want	to	do	it	before	the	developers	have	written	any	code,	because	the	
likelihood	is	that	my	requests	or	the	...	Well,	not	necessarily	my	requests	but	the	
team's	requests	to	be	able	to	have	some	automated	checks	in	place	means	that	
the	way	the	feature's	designed	may	have	to	be	changed.	Perhaps	they	might	
add	in	an	API	for	me	that	I	can	use	to	create	some	data,	or	perhaps	they	might	
design	the	tables	slightly	different	to	make	them	more	automatable.	I	don't	
know.	If	you	don't	bring	this	question	up	at	the	start,	in	my	experience,	going	in	
afterwards	and	trying	to	add	in	testability	is	...	It's	significantly	harder.	In	some	

Richard Bradshaw Your Automated Checks Are Sacred Page 3 of 19

cases	it	will	mean	a	lot	of	rework,	which	the	product's	owner	or	the	team	might	
not	have	the	capacity	to	do.	There's	lots	of	features	to	get	out	the	door	and	
therefore	it	gets	put	on	the	backlog	or	it	never	gets	achieved.	

	 Whereas	if	you	bring	it	up	at	the	start,	it	can	be	designed	into	the	feature,	and	
therefore	you'll	have	it	from	the	beginning.	Some	ways	we	can	look	at	
testability.	Firstly	we	need	the	skill	of	modeling.	We	need	to	be	able	to	think	
about	the	feature,	think	about	where	it	gets	its	data	from,	how	can	we	put	it	
there,	how	is	that	data	used,	and	how	is	that	data	changed	as	you	go	through	
the	flow	of	making	API	calls	or	going	through	a	process	on	a	UI.	We	need	to	
understand	those	data	changes	so	therefore	we	can	control	them	and	we	can	
manipulate	them,	we	can	model	them,	and	we	can	build	stuff	that	helps	us	
change	that.		

	 One	of	the	things	you	can	build	is	called	the	data	builder	pattern.	It's	a	very	
simple	pattern.	You	have	a	model	of	an	object.	You	then	have	something	called	
a	builder	where	you	can	have	predefined	ones	or	you	can	pass	in	values.	For	
example,	a	user	where	we	might	have	build	a	new	user,	which	sets	all	the	flags	
to	be	all	as	if	it	was	a	brand	new	user	in	our	system,	or	I	could	have	us	build	a	
user	that's	been	with	us	for	five	years	and	it	will	add	in	lots	of	data,	set	their	
creation	date	in	the	past	and	behave	that	way.	You	can	have	builders	for	
anything.	Then	the	final	piece	of	the	data	builder	pattern	is	something	called	a	
creator,	so	you	have	a	piece	of	code	that	is	able	to	create	that	object	actually	in	
the	database,	actually	in	your	environment.	That	could	be	an	API	call,	it	could	be	
a	SQL	call,	it	could	be	a	Mongo	injection.	It	could	be	anything,	but	basically	you	
have	a	creator.		

	 This	is	a	really	good	way	to	control	your	data.	You	do	this	at	the	beginning	of	
your	check.	The	data	builder	pattern	relies	on	having	some	hook.	You	need	a	
hook	into	your	system	to	create	the	data.		

	 One	that's	becoming	increasingly	more	popular	is	something	using	mocks	and	
fakes	or	stubs.	I	don't	really	go	into	the	huge	difference	of	them.	It's	not	for	this	
talk,	but	basically	instead	of	talking	to	the	real	database	we	put	something	in	
place	that	we	build.	We	can	build	that.	A	lot	of	automation	engineers	out	there,	
we're	using	common	tools.	We	might	be	adept	in	Selenium,	or	we	might	be	
using	some	other	JavaScript	tools	in	the	UI,	and	we're	very	familiar	with	things	
like	REST	Assured	and	all	these	libraries	out	there.	If	you	actually	take	a	step	
back,	you've	probably	got	a	lot	more	coding	skills	than	you	realize,	and	you	can	
easily	apply	those	to	be	able	to	build	something	like	a	fake	or	a	stub.		

	 I	personally	built	one	for	a	mobile	app	[inaudible	00:08:34]	been	testing	a	few	
years	ago.	Instead	of	hitting	the	backend,	which	was	quite	difficult	to	control;	it	
had	very	poor	testability,	I	was	able	to	build	my	own	API	using	Node	very	quickly	
to	get	up	and	running,	and	I	pointed	my	app	to	that	and	therefore	I	could	
control	the	behavior	of	my	UI	and	my	app,	and	therefore	made	it	more	
automated,	more	and	more	testable.	You	can	also	build	hooks,	so	a	common	
example	of	this	is	the	user	interface.	If	you're	doing	some	UI	automation,	you'd	

Richard Bradshaw Your Automated Checks Are Sacred Page 4 of 19

probably	have	to	authenticate,	you	have	to	log	in	every	time	you	want	to	do	an	
automated	check	if	you're	on	some	kind	of	secure	system.	That	is	a	slow	
process,	and	also	it	adds	a	blocker	into	your	checks.		

	 If	that	log	in	process	fails,	none	of	your	checks	will	run.	Therefore,	you're	
waiting.	You're	going	to	delay	that	feedback	loop,	which	is	not	good.	Can	the	
developers	build	you	in	some	sort	of	backdoor?	Again,	don't	get	me	wrong,	that	
comes	with	other	risks	as	well,	but	thinking	about	these	hooks,	thinking	about	
how	can	you	get	the	checks	right	to	that	point	where	you	can	do	what	you're	
interested	in.	If	you've	got	a	check	that	checks	the	profile	page,	you're	not	
interested	in	logging	in,	but	now	logging	in	is	part	of	your	check.	How	can	we	get	
straight	to	that	profile	page,	put	the	data	in	place	immediately	that's	there,	
bypass	whatever	we	have	to	do	so	we	can	focus	on	the	thing	we're	trying	to	
test,	make	them	more	targeted,	straight	to	that	point,	straight	to	that	page,	
straight	to	that	API	call?	

	 For	example,	in	the	API	space	do	you	have	to	authenticate	every	time	or	can	you	
bypass	it	and	just	pass	in	a	token	that	always	works?	Something	like	that.	We	
have	to	think	about	them.	We	have	to	design	them.	Everyone	can	get	involved	
with	that.	This	is	not	an	automation	engineer's	sole	responsibility.	Product	
owner	needs	to	be	aware	that	you	want	testability,	because	then	they'll	design	
that	into	their	stories.	The	developers	can	help	you.	She	could	build	you	an	API	
that	gets	in	there.	She	could	build	you	queries	ready	for	you	to	be	able	to	
automate	with.	Then	the	testers	who	have	been	using	the	product.	If	you	are	an	
automation	engineer	and	you're	considered	separate	to	the	test	team,	the	
tester	will	have	loads	of	knowledge	about	this	feature,	about	the	data	behind	it,	
and	they	probably	already	have	models	in	place	from	when	they	were	doing	
their	test	design	that	you	can	take	advantage	of.	Everyone	can	help	you	do	this.		

	 Some	questions	to	ask	yourselves	about	state	that	you	might	not	be	thinking	
about.	Go	and	have	a	look	at	some	of	your	checks	and	the	features	that	they're	
using.	Where	does	it	get	its	data	from?	Do	you	have	full	control	over	it?	Are	you	
relying	on	something	else?	I've	seen	some	really	awful	test	suites	where	they're	
relying	on	the	previous	check,	so	previous	check	leaves	data	in	a	certain	state	
for	the	next	one	to	go,	and	that's	bad	because	now	you	can't	run	them	in	any	
order.	In	an	ideal	world,	you	would	run	all	100,	1,000	of	your	checks	in	parallel.	
They	should	not	be	dependent	on	each	other	and	controlling	the	state	allows	
that.	Can	you	create	any	data	object	you	need	in	your	database	or	do	you	have	
access	to	it?	Are	you	relying	on	an	API	that's	perhaps	not	designed	to	do	what	
you're	doing,	or	are	you	going	through	the	UI	to	create	some	of	this	data?	Have	
a	think	about	that.		

	 Then	think	about	who	can	help	you	with	test	testability.	If	you	spot	an	
improvement	for	testability,	tell	the	team,	educate	them,	try	and	get	some	buy-
in.	Then	ask	yourselves	every	time	how	testable	is	this	feature.	You've	got	to	
remember	that	we're	talking	about	automation	here,	and	if	you	can't	do	
something	easy	enough	manually	in	terms	of	exercising	an	API	or	some	
interface,	it's	going	to	be	significantly	harder	to	do	it	with	an	automation	tool.	

Richard Bradshaw Your Automated Checks Are Sacred Page 5 of 19

Ask	yourselves	these	questions.	The	first	one	is	state.	Very	important.	It's	the	
start	of	the	process.	You	control	the	state,	the	rest	of	the	stuff	will	follow	and	be	
deterministic.	If	you	can't	control	the	state,	the	risk	of	flakiness,	the	risk	of	
brittle	checks	is	going	to	be	very	apparent.	Think	about	the	state.		

	 Okay.	Welcome	back.	Board's	updated.	Magic.	The	next	one's	A,	and	A	stands	
for	algorithm,	so	what	I'm	talking	about	here	is	basically	the	flow	that	you	go	
through	to	get	to	the	assertion.	We've	set	our	state,	our	state's	in	place,	and	
now	we're	going	to	have	to	exercise	our	system,	we're	going	to	have	to	exercise	
the	behavior,	and	we're	going	to	have	to	do	that	in	a	certain	order.	It	could	be	
making	one	or	two	API	calls.	It	could	be	clicking	through	several	screens	on	the	
UI.	That	is	our	algorithm.	It's	basically	the	make	up	of	the	check,	what	we're	
trying	to	get	to	until	the	point	of	our	assertion.		

	 Why	it	needs	special	attention.	A	well-designed	check	will	have	a	very	clear	
purpose,	and	it	will	be	highly	maintainable.	If	it's	highly	maintainable	and	it's	
very	clear	what	the	actual	flow	of	this	check	is,	it	will	increase	the	speed	of	
designing	it	as	well	as	the	speed	of	maintaining	it	going	forward.	Now,	in	terms	
of	when	we	do	this,	I've	put	post	testing,	so	the	reason	why	I've	said	this	is	often	
...	It	could	be	a	bit	of	a	misconception,	but	I	have	personally	met	some	
automation	engineers	who	claim	they	don't	do	any	testing.	I'm	just	an	
automation	engineer.	I	just	write	code.	Now,	why	I	say	the	algorithm	is	post	
testing	is	it's	incredibly	rare	that	you	will	just	solely	sit	down,	don't	look	at	the	
system	at	all	and	create	a	check.		

	 You	probably	go	back	and	refresh	your	knowledge.	You	might	click	on	the	UI	
again.	You	might	wonder	is	that	JSON	right?	Maybe	just	make	an	API	call	just	to	
check.	It's	very	rare	that	you	would	just	sit	down	and	run	it.	Even	if	you	do	just	
sit	down	and	type	it	and	type	it	all	out,	the	first	time	you	run	it	you're	watching	
it	very	closely,	like,	"Oh,	please	work.	Please	work.	I	think	I've	got	this	right."	
Then	you're	actually	testing	there.	You're	just	using	the	check	as	your	tool	to	get	
to	the	point	where	you're	happy	and	you	think,	"Right,	[inaudible	00:14:31]."	
Your	check	is	now	fit	for	purpose.	We	do	it	post	testing	where	our	knowledge	of	
the	system	is	clear.	We	understand	the	flow.	We	understand	the	behavior	and	
we	understand	everything	that	we	need	to	put	into	our	check.		

	 Now,	for	example,	things	like	waits	on	the	UI,	they're	incredibly	important	and	
you	wouldn't	be	able	to	do	them	and	get	them	right	without	exercising	the	
system,	therefore	without	testing	the	system,	but	you're	testing	the	system	with	
a	focus	about	check	design.	You're	not	testing	it	to	check	the	feature's	correct.	
You're	testing	it	to	see	how	it	behaves	from	an	automation	ability	point	of	view.	
We're	looking	for	waits,	looking	for	indicators,	looking	for	things	that	might	get	
in	the	way	of	your	check.	That's	when	you're	doing	that	different	type	of	testing.	
Therefore,	we'll	go	in,	we	know	about	the	system.	We've	done	some	actual	
testing	on	the	system.	You	understand	the	behavior,	and	now	we're	doing	
testing	to	discover	how	automatable	it	is	to	make	sure	we	can	get	that	flow	
right	and	give	our	check	everything	it	needs.		

Richard Bradshaw Your Automated Checks Are Sacred Page 6 of 19

	 You've	got	to	remember,	these	checks	are	stupid.	They	don't	know	anything.	
They're	dumb.	We	have	to	educate	it,	so	in	order	for	us	to	educate	it	we	need	to	
make	sure	we	know	as	much	as	we	can	about	that	behavior,	about	the	make	up	
of	that	API	or	that	UI,	and	therefore	we	can	design	our	algorithm	appropriately	
to	make	sure	it	can	handle	all	the	situations	we're	aware	of.	That's	how	we	do	it.	
It's	good	test	design,	for	example,	so	if	you	do	good	test	design,	you'll	get	a	lot	
of	information	and	you'll	be	able	to	push	that	into	your	main	check.	System	
knowledge.	We	need	a	lot	of	knowledge	about	the	system	to	be	able	to	get	this	
right.	As	I	mentioned,	behavior	knowledge	as	well	as	what's	going	on	under	the	
hood.	How	is	our	system	behaving?	What	could	happen?	Is	there	a	flow	on	a	
screen	where	another	window	could	appear?	Do	we	have	to	deal	with	that,	or	
can	we	control	the	state	as	we	spoke	about	previously?If	we	can't,	we	have	to	
improve	our	algorithm	to	be	able	to	deal	with	such	scenarios.		

	 Naming	and	code	craft.	Once	you've	writing	this	algorithm,	we've	got	to	be	able	
to	maintain	it.	Our	systems	never	stand	still.	If	the	system	stood	still,	you	
wouldn't	have	a	job,	so	the	systems	are	always	moving,	therefore	we	have	to	be	
able	to	maintain	these	checks	quickly,	and	if	we	get	our	algorithm	well	writing,	
good	code	craft,	good	standards,	it	should	be	easier	for	us	to	update	and	
maintain	it.	Again,	everyone	can	help,	because	as	I	mentioned	you	need	system	
knowledge.	Product	owners,	BAs,	testers,	they	have	this	system	knowledge.	We	
need	to	know	what's	going	on	under	the	hood.	The	developers	are	the	perfect	
people	to	know	exactly	what's	going	on	under	the	hood.	The	automation	
engineers	need	to	have	the	skills	to	go	under	the	hood,	go	look	at	the	make	up	
of	it	to	make	sure	that	they're	very	aware	of	everything	that	could	happen.	We	
need	to	pull	in	all	that	knowledge.	

	 This	is	the	key	point,	this	is	the	algorithm.	This	is	taking	us	to	our	assertion.	It	
has	to	be	right	otherwise	we're	going	to	introduce	brittleness.	If	we	don't	get	
the	waits	correct,	if	we	don't	have	the	right	different	flows,	if	we're	not	aware	of	
all	the	flows,	we're	going	to	introduce	flakiness	and	brittleness	into	our	
automated	checks	and	we	don't	want	that.	We	want	them	to	be	smooth,	
deterministic,	and	do	the	same	thing	every	single	time.	We	need	to	make	sure	
our	algorithm	is	rock	solid.	You've	got	to	give	this	a	lot	of	thought.	This	is	
difficult.		

	 Now,	a	lot	of	the	time	we	do	this	in	real-time.	We're	aware	of	a	feature,	so	we	
go	on	to	it.	We	look	at	the	screen.	We	look	under	the	hood,	we	write	some	
code,	we	test	it,	we	go	back.	We	write	a	bit	more	and	we	run	it,	therefore	we're	
doing	all	these	things	in	parallel,	but	sometimes	we	can	be	a	bit	distracted	and	
just	say,	"I'm	just	coding.	I'm	just	writing	my	check."	You're	not.	You're	doing	a	
lot	more	and	we	need	to	understand	that	so	we	can	improve	on	the	different	
areas.	

	 Some	questions	that	you	can	ask.	Go	and	have	a	look	at	some	of	your	existing	
automated	checks.	Are	they	starting	at	the	right	place?	Are	they	actually	
starting	in	a	sensible	place	for	what	it	is	you're	trying	to	check?	We	mentioned	
this	in	the	state.	Are	they	starting	on	two	or	three	pages	earlier	than	they	

Richard Bradshaw Your Automated Checks Are Sacred Page 7 of 19

should	be?	If	they	are,	let's	change	that.	Let's	get	our	algorithms	shorter	and	
more	concise	and	more	solid.	Is	the	intention	of	the	check	clear?	Have	we	used	
the	right	terminology	or	the	right	words	so	that	we	understand	what	this	check	
is	trying	to	do?	Can	someone	else	in	your	team	come	and	read	your	code	and	
know	exactly	what	that	check	is	doing?	If	they	can't,	then	perhaps	we	need	to	
think	about	our	wording.	Is	your	wording	concise	and	consistent	with	the	rest	of	
your	application?	Got	to	think	about	this	stuff,	because	other	people	than	you	
may	end	up	reading	some	of	this	code,	and	they	need	to	be	able	to	understand	
quickly.		

	 Then	finally,	is	this	even	the	right	layer?	As	you're	going	about	designing	your	
algorithm,	you	may	go,	"Why	am	I	doing	this	on	the	UI?"	If	I'm	just	caring	about	
these	four	values,	I	know	they	come	from	the	API	because	I've	been	studying	
the	state,	so	why	don't	we	just	do	this	check	on	the	API?	This	is	all	JavaScript.	
Why	don't	you	do	a	JavaScript	test?	Why	are	we	doing	it	on	the	UI?	I'm	actually	
trying	to	look	at	something	visually.	Why	am	I	doing	it	on	the	UI?	Why	am	I	
doing	it	with	Selenium	when	I	could	do	it	with	a	visual	tool?	Again,	some	great	
questions	to	ask.	A	is	for	algorithm.	How	do	we	go	from	the	beginning	of	our	
check	once	the	state's	in	place,	run	through	to	the	point	where	I'm	ready	to	do	
my	assertion?	Algorithm.	We've	got	to	think	very	clearly	about	that.		

	 We're	on	to	C.	C	stands	for	codified	oracles.	If	you're	not	familiar	with	the	word	
oracle,	it's	essentially	a	way	of	how	we	decide	if	something	is	right	or	wrong,	or	
how	we	decide	if	something's	worth	more	investigating.	It	tends	to	be	is	there	a	
problem	here.	A	common	example	I	like	to	think	about	would	be	if	you	went	to	
a	door	and	the	door	handle	wasn't	where	you	expected	it	to	be.	If	the	door	
handle	was	four	foot	high,	you	would	probably	say	actually	is	there	a	problem	
here?	Because	you've	got	an	oracle	in	your	head	that	door	handles	should	
always	be	around	waist	height,	for	example.	Therefore,	you	would	question	it	
and	you'd	be	like,	"That's	different."	Then	you	would	go	and	uncover	
information.		

	 As	a	test	can	any	of	you	spot	what's	wrong	with	this	slide,	this	drawing?	I'll	give	
you	five	seconds	to	think	about	it.	Some	of	you	will	be	screaming	at	your	screen	
now	going,	"The	C	isn't	red.	The	C	isn't	red."	Yeah.	The	C	isn't	red.	Two	letters	
ago	you	wouldn't	have	had	that	oracle,	but	you	do	have	that	oracle	now	
because	you've	spent	the	last	10	minutes	watching	this	talk,	so	therefore	you've	
now	got	this	oracle	in	your	head	that	Richard's	going	to	make	all	the	letters	that	
we're	talking	about	red,	and	therefore	I	didn't	in	this	case,	so	you	were	like,	
"Perhaps	there's	a	problem	here.	Perhaps	he's	made	a	mistake,	or	he's	done	it	
intentionally	to	try	and	teach	you	about	oracles."	It's	definitely	the	latter.		

	 When	do	we	do	this?	We	do	this	while	testing	and	exploring.	As	we're	testing	
and	exploring,	we're	looking	for	problems,	we're	looking	to	see	how	the	
behavior	of	the	features	are	and	if	they're	correct	or	not.	How	we	determine	if	
they're	correct	or	not	tends	to	be	by	some	form	of	codified	oracle.	In	most	of	
the	instances	it	could	be	a	story	in	JIRA	or	you	might	have	a	tracker	you're	using	
that	says,	"When	I	click	buy	now,	I	should	get	a	window	that	says	processing	and	

Richard Bradshaw Your Automated Checks Are Sacred Page 8 of 19

then	I	get	system	confirmation."	A	lot	of	the	time	they're	very	vague,	and	what	
we	do	as	testers	is	we	add	all	our	own	oracles	to	it.	For	example,	it	could	say	if	
you	don't	fill	in	your	credit	card	details	and	you	click	pay,	an	error	should	be	
displayed	in	red	that	says,	"Your	payment,	you've	not	filled	in	your	credit	card	
details."		

	 When	we	come	to	test	that,	all	we're	looking	for	is	to	see	if	we	get	the	error	and	
it's	red,	but	what	you	actually	probably	did	was	you	checked	that	it	was	red,	you	
checked	the	font	was	readable,	you	checked	the	text	size	was	readable,	you	
checked	it	was	in	the	right	place	on	the	screen.	You	checked	that	no	other	errors	
appeared	on	the	screen.	You	checked	that	the	whole	UI	didn't	reorganize	as	it	
appeared	on	the	screen.	That's	what	you	actually	did,	whereas	if	you	told	an	
automated	check	just	to	check	that	the	text	was	on	the	screen	and	that	the	class	
was	red,	that	text	could	be	anywhere	and	it	would	still	pass,	so	we	need	to	get	
better	at	understanding	the	oracles	that	we	use	so	we	can	educate	our	checks	
on	which	ones	it	should	be	using.		

	 If	we're	not	very	good	at	that,	we're	going	to	end	up	with	checks	that	will	always	
either	always	pass	or	the	oracles	are	very	weak	and	therefore	we	could	end	up	
releasing	some	bugs	into	production	that	we	thought	would	never	happen	
because	we	had	checks	in	place,	but	it	turns	out	our	oracles	weren't	good	
enough.	Our	state	was	correct.	Our	algorithm	was	correct,	but	we	failed	on	our	
oracle,	and	therefore	we	need	to	give	them	some	more	thought.	The	way	we	
can	do	that	is	with	our	knowledge.	You're	always	gaining	knowledge	of	the	
system	continuously.	It's	really	important	to	think	about	this	continuously.	The	
system	is	always	on	the	move.	It's	always	changing,	and	therefore	our	
knowledge	is	always	changing,	and	we	have	to	go	back	and	reeducate	the	
system,	reeducate	the	checks	to	bring	them	up	to	date	with	our	current	
knowledge.		

	 You've	probably	got	some	oracles,	some	assertions	in	your	current	code	base	
that	are	pretty	weak,	and	if	you	went	back	and	found	them,	you	would	certainly	
add	to	them.	That's	because	at	the	time	you	mightn't	have	been	as	good	at	
identifying	oracles	as	perhaps	you	are	now,	or	perhaps	after	this	talk	you'll	go	
and	do	some	research	into	oracles.	The	rapid	software	testing	namespace	has	
some	fantastic	materials	on	oracles,	and	there's	also	a	really	...	It's	quite	an	old	
piece,	but	a	really	good	piece	from	a	chap	called	Doug	Hoffman,	which	has	a	lot	
about	oracles	as	well.		

	 We	also	have	to	reflect.	We	have	to	reflect	every	now	and	again	and	go,	"How	
did	I	know	that	was	correct?	What	was	I	doing?	What	was	I	thinking?"	And	
trying	to	put	that	into	our	code,	otherwise	we're	going	to	have	these	poor	
assertions.	Product	owners,	BAs,	testers,	all	are	going	to	be	fantastic	in	helping	
us	do	this.	Product	owners	especially,	because	you've	probably	all	had	the	same	
experience	as	me	where	you	get	a	feature,	you	read	the	acceptance	criteria,	or	
you	read	the	expected	results.	You	do	some	testing.	It's	met	everything	that's	in	
the	ticket.	You	demo	it	to	the	product	owner	[inaudible	00:25:01],	"Nah.	That's	
not	right.	That's	not	right."		

Richard Bradshaw Your Automated Checks Are Sacred Page 9 of 19

	 The	reason	why	it's	not	right	is	because	they	failed	to	actually	come	and	put	
across	what	they	wanted	to	see,	and	therefore	they're	very	good	at	now	being	
able	to	help	us	identify	whether	our	oracles	were	good	enough	in	the	first	place.	
Those	would	be	our	testing	oracles,	but	after	that	those	are	the	ones	that	we	try	
and	put	into	code.	The	difference	with	why	I've	called	this	a	codified	oracle	is	
because	as	soon	as	you	codify	it	and	that	basically	means	put	it	into	words,	put	
it	into	code,	make	it	permanent.	Because	obviously	code	can't	change	without	
us	at	the	moment.	Lots	of	talk	about	AI,	but	some	people	haven't	even	been	
able	to	write	any	automated	checks	yet,	so	we'll	park	that	bus	for	a	while.		

	 We	need	to	be	able	to	educate	the	code,	because	it	can't	do	it	itself.	Once	
they're	codified,	they're	stuck,	and	some	of	them	will	still	be	strong	and	still	
perfectly	valid,	but	other	ones	could	change.	Perhaps	they're	a	bit	weak	now.	
Perhaps	they	should	be	looking	at	two	or	three	elements	on	the	screen.	Perhaps	
instead	of	just	checking	the	one	JSON	value,	it	could	be	turned	into	a	contract	
type	test	that	checks	all	the	JSON.	Who	knows,	but	we	have	to	continuously	
review	these.	Codified	oracles,	very	important.	Basically	your	assertions.	You're	
probably	thinking	when	you're	reading	this,	you	should	be	thinking	about	
assertions.	We	need	to	get	these	assertions	solid.	We	need	to	be	really	solid	to	
make	sure	that	they	are	asking	the	right	questions	of	our	application,	because	
we're	not	there	to	ask	them.	

	 We've	written	these	automated	checks	to	do	that	for	us,	because	we	don't	want	
to	do	it,	but	we've	told	it	to	ask	very	specific	questions	and	we've	told	it	what	
the	answers	should	be	and	if	they're	not	strong	enough,	stuff's	going	to	get	
through.	Sometimes	they	might	be	too	strong	and	they'll	fail	for	different	
reasons.	They'll	fail	at	something	that	actually	isn't	really	part	of	the	check	at	all.	
We	would	have	been	happy	to	ship	it,	but	for	some	reason	now	we've	made	our	
check	too	strong.	That's	another	issue	we	have	to	be	aware	of.	We've	got	to	
continuously	review	these.	Some	questions	you	can	go	and	ask	yourself.	How	
strong	are	your	oracles?	How	strong	are	your	assertions?	Have	you	got	any	of	
the	assert	true	is	true,	which	people	put	on	Twitter	all	the	time.		

	 Have	you	ever	seen	any	of	your	checks	fail?	Sorry,	not	any	of	them.	Have	you	
seen	that	check	fail?	One	of	the	things	I	love	to	do	personally	when	I'm	writing	a	
new	check	is	make	it	fail.	Before	I	commit	it,	I	want	to	see	it	fail.	I	want	to	know	
if	I've	written	a	good	oracle.	I	want	to	know	if	it's	possible	that	it	could	fail.	
Therefore	[inaudible	00:27:31]	want	to	exercise	it.	I	tend	to	do	it	a	few	times	
just	to	make	sure	that	it	is	a	bit	solid.	There's	actually	a	post	on	my	blog	about	
who	tests	the	checks.	Have	a	read	of	that.	There's	some	great	advice	about	how	
to	make	sure	that	you've	got	something	solid	before	you	stick	it	into	the	repo.		

	 How	do	you	know	the	behavior	is	right?	You're	writing	an	automated	check.	
Perhaps	you've	been	tasked	with	doing	that,	or	perhaps	you've	done	some	
analysis	or	risk	analysis	and	you've	gone,	"This	is	an	important	automated	check	
to	have."	How	do	you	know	that	what	you've	decided	is	right	is	right?	If	you're	
not	entirely	sure	or	you're	not	aware	of	why	you	know	it	is	right	and	you	don't	
tell	the	code	that,	again,	you're	going	to	end	up	with	poor	assertions.	The	last	

Richard Bradshaw Your Automated Checks Are Sacred Page 10 of 19

one,	when	was	the	last	time	you	went	through	and	reeducated	some	of	these	
checks?	As	I	said,	screens	change,	layouts	change.	You	might	have	had	an	
assertion	there	at	the	time	just	checking	that	the	text	was	okay	was	enough,	but	
perhaps	some	CSS	changes	have	gone	in	recently	and	now	it	changes	color	or	
perhaps	it	looks	slightly	different.	Perhaps	there's	a	little	icon.	Are	you	now	
looking	at	that	as	well,	and	if	you're	not	do	you	need	to	reeducate	your	code?	

	 I've	also	just	written	an	interesting	piece	on	the	illusions	of	green,	which	is	
another	interesting	angle	to	this	codified	oracle.	Just	because	the	check	is	green	
doesn't	mean	everything's	okay.	It	only	means	that	the	oracles	you've	coded	
have	been	met,	so	therefore	you	need	to	be	very	aware	of	them	and	make	sure	
they're	as	strong	as	they	can	be.	To	do	that	we	need	to	involve	people	who	have	
knowledge	about	the	system	to	make	sure	that	you've	put	in	enough	to	be	able	
to	say,	"Yeah.	This	is	good	enough.	This	is	addressing	the	risk	that	I	set	out	to	
achieve."	That's	what	the	C	stands	for,	codified	oracles.		

	 We're	on	to	R.	The	R	stands	for	reporting	in	the	SACRED	model.	We're	taking	
two	angles	to	reporting	here.	The	first	one	is	reporting	the	actual	outcome	of	
the	check,	pass/fail,	and	any	information	that	goes	with	that.	The	second	one	is	
actually	reporting	on	the	check	itself.	Is	it	healthy?	What	did	it	do?	Does	it	
collect	enough	evidence?	These	the	two	angles	I'm	trying	to	think	about	when	
we	come	to	think	about	reporting.	Why	do	we	need	to	consider	this?	Firstly,	
visibility.	We	write	checks	to	help	the	team	make	decisions.	We	help	them	with	
checking	that	our	knowledge	and	the	knowledge	that	we	think	we	have	is	still	
valid	or	as	it	changes	or	is	there	something	we	should	be	aware	of.		

	 We	use	it	to	get	fast	feedback,	so	what	is	the	visibility?	What	visibility	do	we	
have	of	these	results?	Are	we	simply	looking	at	a	build	radiator	that	goes	red	or	
green,	or	do	we	have	more	in-depth	analysis	that	we	can	look	at?	Can	we	look	
at	the	trends?	Is	there	any	patterns?	Is	there	a	check	that	continuously	is	going	
red,	green,	red,	green,	red	green,	and	if	there	is	can	we	investigate	why	that	
may	be?	Is	there	one	that	seems	to	fail	on	every	second	Monday	there's	one	of	
these	checks	will	fail.	Why	is	that?	Do	we	have	that	insight?	If	we	don't,	perhaps	
we	need	to	build	something	that	can	help	us	do	that.	The	other	one	is	evidence.	
A	lot	of	automated	checks,	they	do	a	lot	of	stuff	and	we	use	them	to	help	us	
make	decisions	about	releasing	and	the	quality	of	the	product,	but	are	they	also	
collecting	any	evidence?	

	 Perhaps	you're	in	a	regulated	environment	where	you	need	to	prove	that	
testing	took	place.	Are	your	automated	checks	outputting	enough	evidence	to	
help	you	with	proving	that	you	did	this	testing?	Are	they	taking	screenshots.	Are	
they	getting	log	files?	Are	they	writing	out	the	steps	that	they	did	and	when	
they	did	them?	The	kind	of	evidence	that	we	apparently	get	from	test	cases,	but	
that's	other	topic.	Our	investigation	speed.	When	we	have	failing	checks,	how	
quickly	can	we	get	in	there	and	actually	find	out	why	it	failed?	A	lot	of	the	time	
what	we	tend	to	do	is	whether	we	downloaded	the	latest	code	base,	we	run	the	
check	that	failed	locally	and	we	watch	it,	waiting	for	it,	waiting	for	it.	I	know	why	
it	failed,	and	then	we	go	in	and	we	fix	it	and	we	try	again.	

Richard Bradshaw Your Automated Checks Are Sacred Page 11 of 19

	 Can	we	put	some	logging	events	into	our	actual	checks	so	that	soon	alls	we	have	
to	do	is	opening	our	CI	tools,	look	at	the	log	and	we	immediately	know	why	it	
may	have	failed,	and	we	can	start	digging	that	way.	Can	we	give	ourselves	a	
headstart	is	what	I'm	trying	to	think	about	with	our	automated	check	and	with	
our	architecture.	That's	how	we	do	that.	We	do	it	with	our	architecture	design.	I	
don't	like	to	talk	about	frameworks	and	things	like	that.	For	me	a	framework	is	
something	we	downloaded	from	the	internet,	a	library.	J	unit	and	N	unit	are	
examples	of	test	frameworks.	Selenium's	an	example	of	a	UI	automation	
framework.	I	like	to	talk	about	architecture.	

	 When	I	build	automation	and	when	I	create	an	architecture	for	my	automation,	I	
like	to	add	these	things	in	there,	and	I	consider	it	part	of	my	architecture.	I'll	
have	lots	of	libraries	and	features	that	are	purposely	designed	to	help	me	with	
the	two	types	of	reporting	that	we've	just	spoken	about.	Also,	when	we	come	to	
design	the	check	itself,	if	it's	something	that's	a	bit,	potentially	be	a	bit	flakey,	
we're	aware	of	a	few	issues	in	that,	I'm	going	to	add	in	a	lot	more	logging	
around	the	areas.	I	want	to	know.	I	want	to	find	out	this	information.	For	an	
example	of	this,	less	of	people	in	WebDriver	for	when	they're	doing	WebDriver	
waits,	they	may	set	that	wait	to	be	something	like	60	seconds,	30	seconds,	20	
seconds.	Every	time	your	check	runs	you	have	no	idea	how	long	it's	getting	to.		

	 What	if	it	was	getting	to	20	seconds	at	every	single	time?	Your	check	would	still	
go	green,	but	as	a	user	if	I'm	having	to	wait	20	seconds	for	everything	I'm	doing,	
I'm	going	to	not	be	very	happy.	You're	not	going	to	know	about	that,	because	
your	check's	green	and	you	haven't	gone	looking	into	it.	Thinking	about	
something	like	that,	do	I	want	to	add	in	some	output	to	my	waits?	How	long	did	
I	actually	wait	and	can	I	graph	that?	Can	I	stick	that	into	a	database	perhaps,	and	
therefore	I	can	look	at	my	average	Selenium	wait	time	and	see	if	my	checks	are	
in	good	health.	I'm	not	talking	about	adding	performance	into	our	automated	
checks.	We've	got	performance	testing	to	do	that	kind	of	behavior,	but	I	want	to	
make	sure,	I	want	to	find	out	if	my	checks	are	smooth,	whether	my	algorithm's	
flowing	straight	through	or	is	it	having	these	little	hiccups	that	I	could	perhaps	
iron	out	if	I	knew	they	existed.	I	would	only	know	they	existed	if	I	had	some	sort	
of	reporting.		

	 The	way	we	can	do	this,	we	can	add	listeners.	There's	lots	of	listeners	in	pretty	
much	all	the	libraries	that	you'll	be	using	and	you	can	take	advantage	of	those.	
You	can	make	yourselves	some	abstraction	layers	on	top	of	those	to	report	how	
whenever	anything	is	happening.	For	example,	logging	in	WebDriver,	you	can	
use	the	event	listeners	and	just	output	everything	that	happens.	As	soon	as	
there's	another	click,	you	can	have	something	that	says,	"I	clicked	element	A."	
Then	when	you	have	a	WebDriver	wait,	you	can	say,	"I	waited	15	seconds."	You	
can	build	all	that	stuff	relatively	quickly,	because	the	opensource	community	
have	built	these	features	for	us	into	those	tools.	Then	also	[inaudible	00:34:50]	
exist	in	every	other	tool,	but	we	can	add	that	in	and	it's	important	because	it	will	
help	us	when	it	comes	to	this	investigation	time.		

Richard Bradshaw Your Automated Checks Are Sacred Page 12 of 19

	 We	can	build	dashboards.	Instead	of	just	a	red/green,	we	can	build	a	dashboard	
to	help	us	look	at	the	actual	health	of	our	automated	checks.	Are	they	healthy?	
How	long	is	the	execution	time	for	certain	checks?	Is	it	going	up	and	down?	Can	
we	then	drill	into	that	and	find	out	why	it's	going	up	and	down?	We	can	add	in	
analytics	into	our	automated	checks.	I	want	to	know	certain	things,	like	I	
mentioned,	how	long	it	took,	how	many	clicks	was	in	that	check?	If	you've	got	a	
check	that's	got	nearly	25,	50	clicks	or	something	like	that,	is	that	a	good	check?	
Should	that	be	broken	down	into	one,	two,	three,	four,	five	different	checks?	
Does	it	have	to	be	this	monolithic	thing?	Why	am	I	doing	so	many	clicks?Again,	
adding	this	kind	of	information	can	help	us	look	at	the	health	of	our	automated	
checks.	

	 Then	we've	got	the	logs	and	screenshots.	For	example,	if	a	check	does	fail,	just	
write	a	little	script	that	goes	and	pulls	the	logs	off	the	server	that	it's	running	
against	and	download	them,	take	a	screenshot	of	the	end	result,	or	take	a	
snapshot	of	the	JSON.	Save	the	JSON	to	a	file	or	save	the	XML,	and	then	just	ZIP	
that	up	and	stick	it	on	there	as	a	test	artifact	so	that	we	can	then	use	that	
afterwards	to	investigate	what	went	wrong,	and	at	the	same	time	though	they	
also	serve	the	purpose	of	that	evidence	bit	I	mentioned.	Think	about	adding	
some	of	this	stuff	into	your	code	base.	Again,	I've	used	every	one.	I've	used	
every	one	because	of	different	reasons.		

	 For	example,	with	your	testers	and	your	automation	engineers,	we	want	to	
know	what's	going	on	with	our	checks.	We	want	to	know	the	health.	You've	
then	got	your	product	owner	who's	using	these	results	to	help	them	make	
decisions,	so	they	want	to	being	able	to	find	the	information	that	they	need,	and	
they	might	want	it	in	a	different	format	to	you,	so	you	might	have	to	consider	
that.	What	do	your	reports	actually	look	like?	Perhaps	you're	in	quite	a	
micromanaged	environment	where	you've	got	to	produce	a	weekly	test	report	
and	it	has	to	be	in	a	certain	format.	Perhaps	the	management	want	rack	
statuses.	Can	you	code	that	into	your	automated	checks	to	produce	that	
automatically	for	you,	instead	of	you	wasting	the	30	minutes,	an	hour	every	
week	trying	to	piece	this	report	together	from	looking	at	the	results	in	Jenkins	
or	whatever	CI	you're	using?	Got	to	think	about	this	reporting	and	build	that	
into	our	automated	checks,	build	that	into	our	architecture.		

	 Then	some	questions	to	go	and	ask	yourselves.	Whenever	you	do	have	a	failed	
check,	how	long	has	it	taken	you	to	go	from	knowing	it's	failed	to	fixing	it	to	
having	it	back	in	and	having	it	being	green	again?	Can	you	improve	that?	Do	you	
need	to	monitor	certain	things	to	help	you	with	that?	I	know	a	check's	actually	
healthy,	again,	not	just	because	they're	green	doesn't	mean	they're	good.	Again,	
your	state	could	be	perfect.	Your	algorithm	could	be	perfect.	Your	oracles	are	
spot	on,	but	if	it's	taken	a	minute	to	run	every	time,	and	realistically	if	you	do	it	
yourself	as	a	human	and	you	could	get	through	that	process	in	20	seconds,	I	
would	argue	your	check	isn't	that	healthy.	Let's	keep	refreshing,	let's	keep	
looking	at	that.	Let's	add	some	reporting	to	help	us	do	that.		

Richard Bradshaw Your Automated Checks Are Sacred Page 13 of 19

	 What	do	your	checks	actually	cover?	What	coverage	do	you	have?	Can	you	add	
something	into	your	reporting,	perhaps	into	your	test	framework	that	you're	
using	that	will	potentially	give	you	some	coverage?	Now,	coverage	is	a	lengthy	
topic,	and	again	I	could	probably	rant	about	coverage	for	a	while,	but	for	me	
coverage	is	coverage	of	some	model.	Can	you	build	something	that	basically	
models	how	you	view	the	application,	map	all	your	automated	checks	to	that	
model	and	then	get	an	insight	into	the	coverage	that	you	have?	Again,	that's	
going	to	help	you	when	the	team	come	in	and	they're	going	to	talk	about	a	new	
feature.	"We're	going	to	rewrite	this.	We're	going	to	refactor	this."	You	can	have	
a	look	at	at	your	reporting,	have	a	look	at	your	coverage	model	and	say,	"Yeah,	
we've	got	quite	a	lot	of	coverage	there.	We've	been	doing	continuous	reviews	of	
our	oracles,	so,	yeah,	I	reckon	...	"		

	 There's	risk	obviously	with	refactoring	but	we	can	mitigate	that	with	our	
automated	checks,	and	we	can	do	all	that	by	thinking	about	reporting.	It's	often	
overlooked	in	my	opinion.	We	tend	to	just	rely	on	your	assertion	passing	or	
failing.	A	lot	of	people	tend	to	rely	on	the	message	as	well	that	you	can	stick	at	
the	end	of	your	assertion.	"I	was	expecting	one,	but	I	got	two."	Again,	that's	a	
terrible	assertion	message.	Adding	some	more	information	into	that	is	a	good	
start.	For	example,	I	was	expecting	one	order	but	there	was	ten	orders.	That	
makes	it	more	contextual,	instead	of	just	getting	an	error	message	that	says,	
"Expected	one	but	got	two."	Again,	reporting,	very	important.		

	 Two	angles	to	it	though.	Information	about	the	check.	Information	about	what	it	
actually	means	the	fact	that	it	failed	or	passed,	or	the	fact	that	it	didn't	detect	
change	or	did	detect	change.	That's	the	R.	That's	reporting.		

	 We're	up	to	E.	E	is	for	execution,	but	before	we	look	into	execution	did	anyone	
find	anything	wrong	with	my	previous	slide	or	my	previous	whiteboard	
[inaudible	00:40:00]?	If	you've	noticed,	thinking	about	oracles	again,	you	would	
have	seen	that	it	said	SCARED	that	time	instead	of	SACRED.	Some	of	you	would	
have	picked	it	up,	and	that's	my	point.	Oracles	are	always	changing.	We're	
always	finding	new	ones.	Anyway,	let's	look	at	execution.	By	using	the	word	
execution	what	I'm	talking	about	is	where	we	execute	these	checks,	which	
environment	we're	running	them	on	and	how	are	we	going	about	doing	that.	
Are	we	running	them	in	parallel?	Are	we	running	one	at	a	time?	Are	we	running	
a	block?	Are	we	only	using	10?	Do	we	have	some	tagged	as	smoke	test	and	we	
do	them	at	a	certain	time?	Are	they	running	on	a	CI	and	perhaps	that	impacts	
the	way	they	run?	Are	we	running	them	in	a	headless	Chrome	or	using	XVFB?	
How	are	we	thinking	about	execution	and	executing	them?		

	 We	have	to	think	about	this	because	it	impacts	the	way	we	design	and	it	
impacts	the	way	the	CIs	are	built	and	it	might	impact	continuous	delivery	if	
you're	in	such	a	context.	We	need	to	think	about	it	to	maximize	their	value.	We	
don't	want	to	necessarily	write	automated	checks	that	are	tied	to	an	
environment.	Perhaps	they're	tied	to	the	QA	environment	or	the	test	
environment.	You	want	to	be	able	to	write	them	so	we	can	reuse	them	
wherever	we	need	to,	and	therefore	we	have	to	factor	that	into	our	design.	It	

Richard Bradshaw Your Automated Checks Are Sacred Page 14 of 19

might	impact	our	algorithm.	If	we	are	tying	them	to	a	specific	environment,	
perhaps	that	environment	doesn't	have	as	much	hardware	as	another	one,	
therefore	our	waits	are	longer.		

	 Perhaps	that	environment's	a	super-speedy	one,	therefore	our	waits	are	lower	
and	perhaps	we	might	run	into	issues	if	we	do	it	on	another	box.	The	same	with	
timeouts	on	various	API	calls,	for	example.	Is	there	any	external	impact?	If	we	
are	running	on	the	QA	environment	or	the	test	environment,	as	I	know	a	lot	of	
people	do,	who	else	is	using	that	environment?	Could	someone	go	onto	that	
environment	and	delete	your	data?	Could	your	checks	put	some	data	in	place	
and	then	someone	comes	along	and	steals	it	or	views	it?	I've	had	numerous	
checks	fail	because	someone's	[inaudible	00:42:08]	and	changed	something.	
Perhaps	they've	changed	the	config	on	the	server	that	you	were	executing	
against,	and	therefore	you've	lost	the	behavior,	and	that	goes	back	to	the	state	
we	spoke	about	earlier	on,	being	able	to	control	that	state.		

	 If	someone	else	can	come	along	and	interfere	with	that,	we	need	to	be	able	to	
either	mitigate	that	or	have	some	kind	of	feature	or	message	in	place	that	says	
the	automation	is	running,	don't	do	it.	Where	we're	getting	to	these	days,	as	
we're	going	to	look	at	further	on,	we	shouldn't	be	worrying	about	environment	
sharing.	We	should	be	able	to	just	spin	up	new	ones	on	the	fly	whenever	we	
need	them	to.	We	need	to	do	this	before	we	do	our	check	implementation.	If	
you	are	potentially	looking	at	running	checks	in	parallel	or	making	them	used	on	
different	environments,	you	have	to	design	them	to	be	so.	Going	back	in	and	
adding	this	later	on	is	possible	but	it's	very	time	consuming,	so	therefore	let's	
try	and	do	that	from	the	beginning.		

	 In	terms	of	execution	these	days	let's	first	look	at	the	test	frameworks.	Now,	are	
you	going	to	run	them	in	parallel?	If	you	want	to	run	them	in	parallel,	does	your	
chosen	test	framework	support	that?	Does	your	CI	support	that?	Do	you	have	
enough	capacity	on	your	boxes	to	support	this?	You've	got	to	think	about	that.	
You've	got	to	factor	it	into	your	decision	making.	In	terms	of	things	like	Docker	
and	virtual	machines	now,	are	you	designing	it	to	be	able	to	just	spin	up	on	any	
machine?	Therefore,	if	it	is	spinning	up	on	any	machine,	you	might	have	to	have	
some	environment	variables	such	as	the	URL	that	you	might	be	hitting	or	the	
API	address.	You	might	have	to	put	them	into	config	files	to	avoid	having	them	
hard-coded.	You've	got	to	think	about	that	as	you're	implementing	your	checks.		

	 Are	they	going	to	be	running	on	CI?	Where	are	they	going	to	run	on	that	CI?	
What	agent	are	they	going	to	pick?	Is	that	box	beefy	enough?	Does	it	have	all	
the	prerequisites	that	you	may	need	for	your	execution?	Does	it	have	the	
browsers	installed,	the	right	versions?	Does	it	have	all	the	libraries	that	you	
made	it	dependent	on?	This	is	where	we	now	move	into	another	realm	when	it	
comes	to	automation	engineers	and	testers.	CI	in	pipelines	are	backing	a	huge	
thing,	and	we	need	to	be	aware	of	it	because	those	things	are	exercising	stuff	
that	we've	been	building	and	therefore	we	need	to	look	at	how	they	work,	get	
help	from	the	teams.	Devops	is	a	buzzword	these	days.	Get	some	help	from	
your	DevOps	engineer	if	you	have	them	to	make	sure	that	you're	designing	

Richard Bradshaw Your Automated Checks Are Sacred Page 15 of 19

checks	to	be	able	to	get	the	most	out	of	them	on	these	pipelines	and	on	these	
CIs.	

	 Not	everyone's	involved	in	this.	Your	product	owners	probably	don't	really	care	
where	they're	being	executed,	but	DevOps	testers	and	devs	can	help	you	with	
this.	Thinking	about	about	the	execution.	It's	okay	having	all	these	checks,	but	
do	you	always	have	to	run	all	of	them?	Perhaps	we	should	tag	some	of	them	to	
only	be	run	on	smoke,	to	smoke	checks.	I	want	to	run	these	15	first	after	every	
single	build	or	deploy,	because	I	want	to	know	if	anything	fails	quickly.	They	
could	be	your	most	critical	paths,	you	know	revenue.	Anything	that	generates	
revenue	is	important.	Anything	that's	about	brand	reputation.	There's	a	really	
good	mnemonic:	RCRCRCRC	from	Karen	Johnson.	Perhaps	you	want	to	factor	
that	into	your	execution.		

	 Perhaps	you	want	to	work	on	areas	that	have	been	recently	changed	first.	If	you	
go	back	to	the	reporting	and	you	have	this	kind	of	coverage	model	in	place	and	
you	know	that	most	of	the	commits	are	in	a	certain	area,	perhaps	you	want	to	
have	some	module	that	says	run	all	these	first,	then	run	everything	else	because	
you	want	that	feedback	quicker.	You	want	to	know	immediately	whether	any	of	
those	are	failing	because	that	potentially	could	be	where	you're	expecting	it.	
Executing	is	really	important	when	it	comes	to	our	automated	checks.		

	 At	the	same	time,	you	want	to	be	running	them	regularly	as	well.	There's	no	
point	writing	these	things	if	you're	going	to	run	them	once	a	week	or	overnight.	
Hardware	is	cheap	these	days.	Just	running	them	as	much	as	you	can,	get	as	
much	value	out	of	them.	Firstly	you're	going	to	get	more	feedback	on	your	
actual	product,	but	you're	also	going	to	get	more	feedback	on	your	actual	
checks.	You	might	start	seeing	that	some	are	failing	more	than	often.	Again,	if	
you	go	back	to	the	R	and	you've	got	good	reporting	in	place,	you	can	improve	
that	over	time	and	you'll	get	more	data	the	more	you	run	them.	They're	cheap.	
Hardware	is	cheap.	Run	them	as	frequently	and	as	much	as	you	can.		

	 Some	questions	to	ask	yourself.	Could	you	run	your	checks	on	any	environment?	
If	someone	turned	up	in	your	company	and	just	spun	up	a	new	environment	
tomorrow,	would	your	checks	execute	on	that	environment?	If	not,	why?	Do	
you	know	why?	Are	you	aware?	Do	you	have	enough	knowledge	of	your	
product	and	of	your	suite	to	be	able	to	understand	your	architecture,	to	
understand	why	those	checks	won't	run	on	that	environment?	Are	any	of	your	
checks	tied	to	a	specific	environment?	If	they	are,	is	that	okay	or	does	that	need	
changing?	Perhaps	it	was	a	decision	made	a	long	time	ago	and	hasn't	been	
revisited.	Let's	have	a	think	about	that.	More	importantly	here,	we	want	to	run	
our	checks	in	parallel	because	we	want	that	feedback	quicker.	That's	what	
having	automated	checks	is	about,	continuous,	fast	feedback.		

	 Now,	to	do	that	your	checks	need	to	be	check	safe,	for	want	of	a	word,	making	a	
play	on	the	word	thread-safe.	We	don't	want	any	checks	to	bleed	into	other	
checks.	We	want	them	to	be	self-contained	and	be	able	to	execute	all	on	their	
own.	If	they're	not,	then	you	might	run	into	some	issues	where	you've	ended	up	

Richard Bradshaw Your Automated Checks Are Sacred Page 16 of 19

with	dependencies	on	your	checks.	Check	A,	B,	and	C	has	to	run	before	D,	
otherwise	D	will	fail.	Perhaps	it	doesn't	have	the	right	data	in	place.	Perhaps	it's	
using	data	that	was	set	by	A,	B,	and	C.	If	that	is	the	case,	let's	look	at	refactoring	
those	and	jump	back	to	the	S.	Think	about	the	state.	Can	I	do	that	in	a	different	
way	so	that	I	don't	have	any	dependencies,	and	therefore	if	suddenly	I	do	have	
unlimited	hardware,	I	can	run	all	my	hundred	or	thousands	of	checks	in	parallel	
and	you	can	get	feedback	within	a	few	minutes	instead	of	spending	hours	or	
overnight	as	I	know	some	teams	still	have.		

	 That's	execution.	Very	important.	We've	got	to	run	these	things	a	lot,	so	we	
need	to	make	sure	we've	designing	them	to	be	able	to	run	as	frequently	as	we	
like,	as	stable	as	we	like.	One	to	go.	

	 The	final	letter.	The	final	letter	is	D,	and	in	this	case	the	D	is	for	deterministic.	
Deterministic	is	basically	the	goal,	it's	what	we're	trying	to	achieve.	We	want	our	
checks	to	be	deterministic	because	we	want	to	know	exactly	what	they're	going	
to	do,	how	they're	going	to	do	it	and	what	that	means	for	when	it	passes	or	fails	
or	detects	change.	We	want	to	know	exactly	every	single	time	that	it's	going	to	
do	the	same	thing.	We	want	it	to	be	deterministic.	Reasons	why.	Reliability.	We	
want	these	checks	to	be	reliable.	We're	using	them	to	get	fast	feedback.	We're	
using	them	for	information	about	the	product,	about	the	quality,	insights	into	
that	product.	Information	that	we	then	subconsciously	sometimes	use	to	dictate	
our	further	testing.		

	 If	everything's	green,	I	can	probably	guess	that	some	of	you	will	not	do	as	much	
exploratory	testing	as	you	may	have	done.	If	it	goes	red	and	it's	been	red	on	
several	occasions,	you're	probably	going	to	go	and	do	some	more	exploratory	
testing,	or	you're	going	to	be	a	bit	more	nervous	about	it.	In	that	situation	we	
want	to	know	exactly	what	they've	done	and	they've	done	exactly	what	we	told	
them	to	do,	how	we	coded	them,	how	we	made	our	algorithm,	make	sure	our	
oracles	are	solid,	and	that	we	have	all	that	reporting	in	place.		

	 We	need	to	trust	them.	They're	a	huge	part.	Companies	and	teams	are	investing	
a	lot	of	money	in	these	automated	checks,	and	you	need	to	trust	their	results.	If	
you	don't	trust	their	results	or	you're	ever	within	any	doubt,	it's	probably	
because	they're	not	deterministic,	and	if	they're	not	deterministic	perhaps	the	
SACRED	model	can	help	you	to	go	through	and	do	some	analysis	on	the	checks	
that	you	have,	and	see	if	you	can	spot	any	areas	to	improve.	When?	All	the	time.	
Pretty	much	all	the	time.	Every	time	we	add	something	to	our	architecture,	to	
our	checks,	when	we	think	about	what	we're	going	to	build	and	what	we're	
going	to	implement,	we	need	to	be	thinking	all	the	time	in	the	back	of	our	head,	
"Is	this	deterministic?	Is	it	going	to	do	the	same	thing	every	single	time?"	
Because	that's	what	we	wanted	it	to	be.		

	 If	there's	an	area	or	some	part	of	the	state	that	we	haven't	controlled,	that	may	
be	a	risk	to	meeting	this	target	of	always	being	deterministic.	If	we've	added	
some	if	statements,	a	few	dodgy	waits	into	our	algorithm,	it's	not	ideal,	pulling	

Richard Bradshaw Your Automated Checks Are Sacred Page 17 of 19

back	to	our	deterministic	and	to	deterministic	ability.	We	need	to	think	about	
this.		

	 Again,	as	I	said,	we	do	testing	all	the	time.	You	need	to	test	your	checks.	Sounds	
crazy,	right?	Who	tests	the	tests?	We	can	get	into	that	turtle	analogy,	turtles	all	
the	way	down,	but	it's	true.	Well,	building	a	piece	of	software	that's	what	often	
is	overlooked	and	that	surprises	me	about	the	industry.	We've	got	product	
owners,	developers	and	testers,	analysts,	DevOps	teams	for	our	products,	but	a	
suite	of	automated	checks	and	automation	architecture	is	a	piece	of	software,	
and	usually	done	by	one	or	two,	three,	four	people	that	all	have	the	same	role	
and	that	role	is	to	be	an	automation	engineer	or	a	tester.	Sometimes	we've	got	
to	put	on	a	different	hat	and	look	at	...		

	 I'm	saying	this	is	my	model.	This	is	what	I've	been	using,	but	this	allows	me	to	
think	about	different	aspects	and	put	on	that	different	hat	to	think	from	a	
slightly	different	angle,	because	we're	building	a	piece	of	software	and	we	
normally	have	teams	of	10,	15	people	working	on	the	actual	thing	we	sell.	Sure,	
perhaps	it's	not	as	complicated,	it's	not	as	complex,	but	it's	still	a	piece	of	
software	and	we	need	to	test	it	to	make	sure	that	we're	hitting	that	goal	of	
being	deterministic.		

	 Continuously	review.	We	need	to	be	going	over	everything,	as	I've	said.	Is	the	
reporting	right?	Are	our	oracles	good	enough?	Is	our	algorithm	solid	enough?	
We	need	to	be	continuously	reviewing	this	to	focus	on	making	sure	that	when	
they	go	green	or	when	they	go	red	we	know	that	there's	a	potential	problem	
there	and	it's	not	just	some	flakiness.	Everyone	gets	involved.	Finally,	some	
questions	to	think	about	this.	When	your	build	radiator	is	green,	do	you	actually	
know	what	that	means?	Do	you	have	enough	confidence,	enough	trust	in	your	
checks	to	be	able	to	go	to	someone	and	explain	to	them	exactly	what	it	means	
that	it's	gone	green?	If	you	don't,	have	a	review	of	your	checks,	improve	the	
reporting,	try	and	find	out	why,	and	try	and	build	that	trust	level	up.		

	 If	I	was	to	come	to	some	of	your	checks	and	make	a	few	changes,	if	I	was	to	
change	A,	would	you	be	able	to	tell	me	what	will	happen	to	that	check?	If	I	
change	some	data	in	the	database,	can	you	tell	me	what	the	results	or	what	the	
outcome	of	that	check	will	be?	Will	it	fail	and	will	it	tell	you	exactly	why?	That's	
really	important.	Have	a	play	around	and	see	what	you	can	find	out.	This	isn't	
the	question,	but	it's	a	good	measurement.	In	your	team,	how	many	times	are	
you	saying	the	word	flaky?	How	many	times	are	you	saying	something	along	the	
lines	of,	"Yeah.	It's	done	that	before.	It	always	does	that.	It's	not	important.	It'll	
pass	the	next	time	we	run	it."	Act	upon	those	things.	They	are	triggers.	They	are	
desperately	telling	you	to	come	look	at	me,	explore	me,	investigate	me,	try	and	
find	out	what's	wrong	with	me.		

	 As	far	as	I'm	concerned,	whenever	a	check	goes	red,	it's	an	invitation	to	explore.	
Let's	go	and	find	out	why	it's	gone	red	and	see	if	I	can	identify	the	cause,	
improve	it,	change	it,	fix	it,	or	whatever	word	you	want	to	use	so	that	I	can	
make	it	deterministic,	because	that's	what	I	need	to	achieve.	I	want	reliable	

Richard Bradshaw Your Automated Checks Are Sacred Page 18 of 19

automation	that's	fast	to	execute,	gives	me	fast	feedback,	and	when	it	does	fail,	
gives	me	all	the	information	that	I	need	to	know	in	order	to	be	able	to	
understand	what	the	problem	may	be,	if	there	is	a	bug,	or	if	there	is	some	
important	information	I	need	to	give	someone,	and	I	want	to	trust	my	checks	to	
deliver	that	all	the	time.	Deterministic	is	the	ultimate	goal,	because	otherwise	
we	have	flakiness,	we	have	mixed	results	and	you	can	end	up	in	this	really	awful	
place.		

	 I	joked	about	this	at	the	Selenium	conference	recently.	You	can	have	someone's	
job	is	they	come	in	and	fix	broken	checks.	Literally	come	in	Monday	morning,	
build's	red,	make	the	build	green.	Go	for	lunch,	come	back,	build's	red.	Make	
the	build	green.	Go	home.	Come	back	in	on	Tuesday	and	so	on,	and	so	on,	and	
so	on.	How	depressing.	How	boring.	You	don't	want	to	be	doing	that.	We	want	
to	be	testing.	We	want	to	be	getting	knowledge.	We	want	to	be	building	checks	
of	value,	so	let's	do	that.	That	pretty	much	brings	me	to	the	end.		

	 The	SACRED	model.	As	I	said,	I	spent	some	time	thinking	about	what	I	was	doing	
as	an	automation	engineer.	Whenever	I	was	writing	some	checks,	what	was	I	
actually	doing?	I	was	doing	significantly	more	than	writing	code.	I	wanted	to	
understand	what	I	was	doing	so	I	could	share	it	with	others,	and	since	doing	so	
I've	been	able	to	talk	to	many	people	about	do	you	have	to	go	down	the	coding	
route	or	can	you	still	add	value	to	automation?	I'm	hoping	from	watching	this	
and	thinking	about	some	of	the	ideas	that	I've	shared	in	here	that	you	can	get	
an	understanding	and	appreciation	for	some	of	the	other	roles	that	exist	in	your	
team,	how	they	can	contribute	to	your	automation	efforts	without	having	
necessarily	to	know	how	to	code.		

	 Perhaps	there's	a	few	testers	in	your	team	that	management	might	be	pushing	
into	the	coding,	trying	to	line	them	up	to	go	to	code	school.	Can	they	still	be	of	
immense	value	to	your	automation	without	having	to	go	that	code	level?	Can	
they	pair	with	you?	Can	you	mod	on	something?	Don't	have	to	go	to	the	code	
school.	Other	people	in	your	team,	they	can	contribute	to	your	automation	
efforts.	Don't	struggle	on	your	own.	Go	and	talk	to	the	developers,	the	DevOps	
teams,	your	product	owner.	Try	and	get	some	help,	some	insight.	If	your	
introduction	into	automation	was	always	down	the	code	route,	have	a	reflection	
on	some	of	the	other	skills	that	I've	mentioned.	Can	you	improve	them?	Do	you	
even	know	where	to	go	to	improve	some	of	them?		

	 Perhaps	you	need	to	go	and	investigate	that.	Perhaps	using	the	SACRED	model	
to	go	back	and	review,	use	it	as	a	pattern.	Perhaps	you	could	give	yourself	a	
score.	I	thought	about	this	the	other	day.	Could	you	give	yourself	a	score	out	of	
10	for	each	of	these	components,	and	therefore	give	yourself	some	direction	to	
go	and	improve	on	your	checks	that	are	out	there?	To	finish,	it's	just	a	model.	
It's	just	my	pondering,	my	thinking,	but	it	has	helped	me	so	far	and	I	know	it	has	
helped	other	people	out	there.	A	colleague	of	mine,	Mark	[Winteregan's	
00:57:41]	been	able	to	use	it	in	his	company	to	redesign	some	existing	checks.	
He	spoke	about	that	at	the	Selenium	conference,	as	an	example.	

Richard Bradshaw Your Automated Checks Are Sacred Page 19 of 19

	 It	applies	to	all	levels	of	automation.	This	is	not	tied	to	UI.	The	concepts,	it	works	
on	every	layer	that	you	would	want	to	add	automation	in.	Have	a	think.	See	if	
you	can	use	it.	I	hope	it	brings	you	some	value.	Right	now	getting	ready	for	
some	questions.	I	hope	you	can	join	me	for	the	live	Q&A.	Please	fire	any	
questions	to	me.	I	love	to	answer	them.	To	be	honest,	I	think	it's	one	of	the	best	
times	because	you	can	actually	find	out	if	a	speaker	does	know	anything	or	not.	
Thank	you	for	watching.	I	hope	you	get	some	value	out	of	it.	As	I	mentioned,	my	
name	is	Richard	Bradshaw.	I'm	also	the	Friendly	Tester.	I	blog	as	
thefriendlytester.co.uk,	and	I'm	also	the	boss	at	Ministry	of	Testing.		

	 If	you've	not	heard	of	Ministry	of	Testing,	check	us	out.	We've	got	a	cool	logo,	
and	we're	very	supportive	of	the	wider	community.	Thanks	for	Joe	for	the	
opportunity,	and	let's	dive	into	these	questions.	See	you	soon.		

	

	

