
https://automationguild.com	

Jeff “Cheezy” Morgan - Patterns of Automation
	

Jeff	Morgan:	 Hello,	everybody.	I	am	super	psyched	to	be	here	at	the	Automation	Guild	and	to	
give	this	talk	"Patterns	of	Automation".	Just	a	little	bit	about	myself.	My	name	is	
Cheezy.	Some	folks	actually	know	me	by	my	nickname	Jeff	Morgan,	but	most	
people	just	call	me	Cheezy.	I	work	for	a	company	called	Tango	and	as	you	can	
see,	I	dance	the	tango,	as	well.	What	do	I	do?	Well,	I	work	mostly	in	the	area	of	
continuous	delivery,	continuous	deployment.	The	teams	I	work	with	every	time	
we	commit	code,	it	goes	directly	to	production.	So,	that's	what	I	do.	I	help	
companies	learn	how	to	do	that	and	take	them	all	the	way	through.	Many	
people	believe	that's	largely	about	DevOps	and	DevOps	is	a	big	piece	of	that,	
but	it's	also	about	the	way	we	write	code,	the	way	we	test	code.	Those	have	to	
radically	change,	because	we've	got	to	get	to	a	point	where	we	don't	develop	
and	then	test	after	the	fact,	but	instead,	we	can	know	each	moment	that	we	
have	a	high	quality	software.	So,	it's	sort	of	a	little	bit	of	a	shift	left.	

	 This	specific	talk,	I'm	giving	to	you,	because	there's	a	lot	of	things	I've	seen	in	
working	with	dozens	of	teams	out	there.	A	lot	of	problems	that	I've	seen	with	
automation	code	and	a	lot	of	really	good	patterns	that	I've	seen	that	help	us	
structure	our	code	in	a	great	way.	So,	you're	going	to	see	some	coding.	Yeah,	
you're	going	to	see	me	do	some	coding,	mistakes	and	all.	But,	that's	okay.	I	
don't	worry	about	that	too	much.	So,	what	are	these	patterns?	Well,	these	
patterns	are	just	things	that	I	have	seen,	and	others	in	the	industry	have	seen,	
and	observed	that	help	us	produce	a	higher	quality	product,	and	it's	something	
that	we	can	talk	about	amongst	ourselves.	I	can	mention	this	pattern	or	that	
pattern,	and	if	you're	familiar	with	it,	you	know	exactly	what	I'm	talking	about.		

	 I'm	going	to	skip	past	this	fairly	quickly	and	get	straight	to	the	first	pattern	I'm	
going	to	talk	about.	It's	this	pattern	called	specification	by	example.	Some	
people	call	it	BDD.	There's	other	terms	that	are	used,	but	we'll	just	use	
"Specification	by	example".	When	we're	building	software,	there	really	are	
three	things	that	we	tend	to	create.	I	work	exclusively	in	a	[agile	00:02:19]	
fashion,	so	one	of	the	things	that	we	build	is	user	stories	that	has	some	
acceptance	criteria	that's	along	the	way	that	tell	us	what	we	should	be	building,	
and	how	we'll	know	when	we're	finished.	Another	thing	is,	as	we	build	the	
actual	coded	self	with	lots	of	lots	of	unit	tests,	and	the	final	thing	is	we	build	
some	automated	higher	level	tests,	as	well.	

	 To	be	quite	honest,	all	three	of	these	things	should	completely	reflect	each	
other.	In	other	words,	the	specification	should	be	reflected	in	the	code	and	all	of	
the	tests	along	the	way,	as	well.	The	problem	that	we	have,	is	that	when	lots	of	
different	people	work	on	different	pieces	of	this,	they	tend	to	get	out	of	sync	
with	each	other,	and	we	tend	to	have	some	duplication.	Especially,	between	the	
acceptance	criteria	and	the	tests,	because	the	way	I	see	it	is	that	for	each	high	
level	business	objective	as	defined	in	a	user	story,	we	actually	needed	an	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 2 of 13

automated	test	that	first	of	all,	validates	that	it	made	it	into	the	system,	and	
secondarily,	that	it	works	as	it	was	specified.		

	 Whenever	we	start	to	think	about	what	are	the	differences	between	these,	
though,	for	me,	the	difference	between	a	requirement	and	a	test	comes	down	
to	data.	Let's	take	a	quick	look	at	an	example	of	that.	Let's	take	a	simple	
example	that	we're	trying	to	build	a	calculate,	and	we're	starting	with	the	
addition	function.	So,	we	might	say	that	the	requirement	is	that	addition	would	
equal	the	sum	of	the	numbers	that	we	put	in	place,	and	whenever	we	would	
actually	turn	that	into	a	test,	we	would	have	to	actually	provide	real	numbers.	
So,	my	test	would	have	to	say	something	3+4=7	and	3+-1=2.	As	a	good	tester,	I	
would	start	putting	boundary	conditions.	I'll	try	to	test	adding	a	zero.	I	might	
come	up	with	a	really,	really,	really	large	number	and	test	it.	But,	as	you	can	see,	
all	I'm	doing	is	taking	the	requirement,	producing	an	example,	and	adding	data	
to	build	my	test.	That	is	essence	is	what	specification	by	example	is.	It's	all	about	
building	examples	that	define	how	the	requirements	are	carried	out.	
Furthermore,	the	other	interesting	aspect	of	it	is	that	we	try	to	make	those	
examples	the	requirements.	

	 So,	I	could	ramble	on	and	on	about	it,	but	realistically,	it's	much	better	if	you	see	
it	in	the	code.	So,	I'm	going	to	switch	over	real	quickly,	and	write	some	codes	
that	you	can	sort	of	see	this	a	little	bit	right	now.	

	 Okay.	So,	here	we	are	looking	at	the	code.	Specification	by	example.	So,	what	
you're	seeing	here	is	something	called	Gerkin	and	as	you	can	see,	it's	plain	
English	that	kind	of	describes	the	requirements	for	what	we're	about	to	build.	
This	first	one	is	talking	about	a	thank	you	message.	When	I	complete	the	
adoption	of	a	puppy,	then	I	should	see	"Thank	you	for	adopting	a	puppy!"	Again,	
this	is	the	specification.	And,	what	you	see	now	are	the	steps.	These	are	
generated	by	the	tool,	and	they	all	basically	say	pending	right	now,	so,	as	you	
can	see,	I	haven't	done	any	of	the	coding,	yet.	Let's	get	started.	

	 I'm	going	to	start	by	going	out	to	the	page	and	so,	here	we	go.	And,	now	that	I'm	
on	the	page,	I	want	to	navigate	through	all	of	the	pages,	and	complete	an	
adoption.	I've	got	a	button	to	click	here	and	another	button,	and	buttons	
everywhere,	right?	So,	just	click	this	one.	And,	one	more	button,	and	that	gets	
me	to	the	checkout	page.	And,	on	this	checkout	page,	I've	got	a	form	that	I	need	
to	fill	out.	So,	what	are	the	ID's?	Yes,	okay.	I	could	use	some	coffee	or	caffeine	
right	now.	But,	that's	okay.	By	the	way,	this	isn't	a	live	site,	so	I'm	not	going	to	
be	receiving	puppies	at	my	house	by	placing	this	order.	And,	the	dropdown.	
Okay.	And,	one	more	button	to	click.	And,	now,	I	need	to	validate	that	I	can	see	
the	thank	you	page,	so	I'm	going	to	use	this	...	Just	look	anywhere	on	the	page	
and	see	that	the	text	should	be	anywhere,	and	I	think	that	does	it.	So,	let's	run	
this	first	test,	and	let's	see	what	happens.	Wow!	What	do	you	know?	I	got	it	
right.		

	 Okay.	Let's	go	to	the	next	text.	I'm	just	going	to	copy	this	down,	because	that	
much	of	it	is	the	same	when	I	checkout	without	a	name.	So,	the	challenge	I	have	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 3 of 13

hear	is	that	either	the	name	or	the	address,	I've	got	to	set	it	to	a	blank	field.	So,	
I'm	just	going	to	start	by	creating	these	variables.	I'm	going	to	try	to	set	them	to	
the	right	value	based	on	if	it's	a	name	or	address.	So,	if	the	field	is	equal	to	a	
name,	I	want	to	make	it	blank.	So,	I'll	set	it	to	a	blank	string,	and	if	not,	I'll	set	it	
Cheezy.	The	same	with	the	address.	So,	if	the	field	is	an	address,	I	want	to	set	it	
to	blank,	otherwise	I'll	set	it	to	one,	two,	three.	Now,	I	just	need	to	use	these	
variables	when	I'm	setting	the	value	on	the	page.	So,	there	it	goes.		

	 And,	now,	error	message.	So,	there	is	a	div	on	this	page	that	kind	of	contains	the	
errors,	and	it	has	an	ID	of	error	explanations.	So,	I'm	going	to	get	ahold	of	that	
div	first.	Inside	of	that	div,	there	is	an	unordered	list,	and	I	want	to	grab	the	text	
of	that,	and	I	want	to	put	that	in	as	error.	So,	I'm	expecting	that	error	to	equal	
the	error	message	that	I	passed	out.	And,	let's	run	that	and	see	what	we	get.	
Yep,	that	one	worked.	Let's	run	it	for	address	and	see.	Okay.	Looks	good.	I've	got	
this	final	test.	And	again,	I	need	to	navigate	over	to	the	checkout	page.	So,	I'm	
just	going	to	grab	this	and	copy	it	down.	I	don't	suggest	you	copy/paste,	by	the	
way.	I'm	the	only	one	allowed	to	do	that.	So,	now	I	want	to	grab	the	options	
from	the	page.		

	 Now	that	I	have	those	options,	I	want	to	collect	the	text	from	each	of	those.	So,	
let's	do	that.	And,	now	I've	got	an	array	with	the	text.	Let	me	now	walk	through	
the	values	that	I'm	passing	in.	And,	I'm	going	to	expect	that	array	of	the	text	to	
include	each	of	those	things	that	I'm	passing	in.	So,	let's	do	that	to	include	and	
that	hash,	pay	by	is	the	key	that	I	use.	So,	let's	run	that.	Okay.	As	you	could	see,	
we	have	all	those	tests	working.	And,	that's	all	there	is	to	specification	by	
example.	

	 Well,	it	looks	like	we	got	through	that.	Do	you	notice	that	in	Gerkin,	or	in	my	
specification,	I	didn't	say	"Click"	or	I	didn't	say	that	I	"Entered	this	text"	or	"That	
text"?	What	I	found	is	that	it's	important	in	the	specification	by	example	to	talk	
about	the	business	rules.	I'm	not	really	talking	about	the	implementation,	
because	the	implementation	can	be	a	little	messy.	In	this	specific	case	that	we	
looked	at,	I	didn't	say	which	puppy	did	I	select.	I	didn't	say	things	like	having	to	
navigate	to	these	other	screens.	Instead,	I	simply	said	"When	I	complete	the	
form	and	leave	a	name	blank,	then	I	should	get	an	error".	So,	I	didn't	even	talk	
about	any	of	the	details.	So,	that's	kind	of	an	important	thing	to	keep	in	mind	as	
you	do	this.	

	 So,	we're	on	to	the	next	pattern	and	there's	no	coding	involved	in	this.	Basically,	
what	this	is	is	a	practice	acceptance	test	driven	development	I	think	is	a	good	
design	pattern	that	takes	the	specification	by	example	and	puts	a	workflow	
around	it.	So,	let's	talk	about	it	a	little	bit.	So,	in	agile	teams,	they	try	to	do	
something	like	this	where	they	like	to	say	hey,	I'm	going	to	write	some	code	and	
then	as	soon	as	I	write	the	code,	somebody	is	going	to	be	running	to	test	it.	The	
theory	goes	that	while	somebody's	testing	that,	the	developer	can	continue	on	
to	story	two,	and	they	could	start	to	write	the	code	for	that.	When	they're	done,	
someone	magically	is	going	to	be	ready	to	test	story	two,	and	everything	just	
works	perfect,	right?	Except,	it	really	doesn't,	because	if	an	issue	or	a	defect	is	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 4 of 13

found	while	working	the	first	story,	guess	what?	That	second	story	needs	to	be	
put	on	hold	so	the	developer	can	come	back	and	finish	fixing	story	one,	and	
deliver	it	back.	But,	don't	worry,	he's	going	to	finally	get	back	to	story	two,	and	
everything's	going	to	be	great,	except	sometimes	it	doesn't	go	as	planned.	

	 So,	sometimes	people	keep	bouncing	back	and	forth	between	fixing	defects	and	
trying	to	get	more	work	done.	Now,	what	I	call	this,	is	I	like	to	call	this	
development	ping	pong.	It's	kind	of	where	a	developer	pings	some	code	into	a	
test	environment	and	the	very	first	time,	the	tester	finds	a	defect	in	just	a	few	
seconds,	and	that	gets	ponged	back,	and	so	on	and	so	on.	You	know,	you've	
probably	played	this	game	many,	many,	many	times.	Your	typical	workflow	in	
agile	goes	something	like	where	a	user	story	IE.,	the	ball,	that's	what	the	orange	
thing	is,	goes	to	development	when	they're	done.	They	kind	of	punt	it	over	to	
test.	When	they're	done,	it	goes	over	to	review.	The	product	owner	looks	at	it.	
Of	course,	every	time	the	product	owner	absolutely	loves	the	user	story,	and	
eventually	it	goes	to	done.	

	 The	challenge	that	ping	pong	game	that	we	just	talked	about	where	things	keep	
going	back	and	forth	between	development	and	tests.	For	me,	in	accepted	test	
[inaudible	00:14:29]	development,	the	first	thing	that	we	do	is	we	completely	
get	rid	of	that	test	phase.	There	is	no	more	test.	In	fact,	I	think	personally	having	
the	test	phase	is	sort	of	an	evil	thing,	because	what	it	is	does	is	it	starts	to	build	
this	idea	that	development	and	testing	are	actually	two	different	things.	In	fact,	
they	are	not.	In	fact,	they	are	one	thing.	Building	it	and	building	the	quality,	and	
then	validating	the	quality	are	all	one	activity.	So,	therefore,	whenever	the	user	
story	comes	into	the	team,	the	product	owners	already	kind	of	written	some	
Gerkin	and	they	sort	of	think	that	it's	right.	They've	gotten	it	75-80%	right,	
maybe.	Who	knows.		

	 One	of	the	very	first	things	that	we	do	then,	before	we	start	writing	code	is	we	
have	this	thing	called	the	three	amigos,	and	that's	where	the	developers	and	
testers	that	are	going	to	work	on	it	sit	down	and	talk	with	the	product	owner.	
They	kind	of	read	through	that	Gerkin	that's	been	put	together	and	they	make	
any	adjustments	or	changes	that	need	to	be	happening	there.	Of	course,	even	
though	they're	all	wearing	sombreros,	they're	also	wearing	their	hat	for	their	
role.	For	example,	the	test	might	be	saying	things	like	thinking	about	boundary	
conditions	that	exist	in	the	software.	So,	they	might	say	"Well,	what	if	this	
occurs,	or	have	you	thought	about	this?"	And,	sometimes,	people	haven't.	So,	
what	do	we	do?	Well,	we	create	another	scenario	or	whatever	it	might	be.	
Basically,	there's	some	collaboration	at	work	there.	For	his	questions,	if	the	
project	owner	is	there,	we	just	have	it.	If	the	tester	finds	a	defect,	then	we	fix	it.		

	 In	fact,	I	don't	condone	and	my	teams	I	work	with	do	not	have	defect	tracking	
tools.	So,	we	follow	a	zero	defect	policy,	which	basically	means	any	time	in	any	
circumstance	that	a	defect	is	found,	it's	addressed	immediately.	It's	kind	of	like	
the	pipeline.	You	know,	you've	all	heard	that	your	build	process,	your	build	
pipeline,	if	it	stops,	the	team	stops,	and	takes	a	look	at	it,	and	figures	out	what's	
wrong	and	fixes	it.	It	becomes	the	highest	priority.	We	treat	defects	the	same	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 5 of 13

way.	If	a	defect	is	found,	we	stop,	we	fix	it,	we	address	it.	As	a	result,	we	don't	
have	any	defects	in	our	backlogs,	so	we	don't	need	a	defect	tracking	tool.	Lots	of	
collaboration	going	on	here.	Eventually,	the	user	story	goes	over	to	review.	
Whenever	we	say	we're	done,	it	is	because	a	developer	and	tester	have	built	
this	together,	collaborated	on	a	lot	of	the	development,	and	testing	activities,	
and	have	said	"To	the	best	of	our	abilities,	we	don't	know	of	any	defects."	That's	
kind	of	the	chain	that's	there.	

	 So,	how	really	does	this	work?	What	we're	trying	to	do	is	instead	of	code	it	and	
then	test	it,	we're	trying	to	do	those	two	things	at	exactly	the	same	time.	So,	
what	happens?	Well,	the	developer	...	Usually	on	the	teams	that	I	work	with,	
they're	doing	TDD,	and	they're	almost	always	doing	that	with	a	pair.	Sometimes,	
we're	doing	it	in	a	mob	where	a	whole	team	or	half	the	team	is	all	together	in	
front	of	a	large	monitor	or	TV	screen,	or	something	like	that.	The	tester	is	
actually	automating	those	acceptance	tests	that	we	saw	earlier.	They're	building	
up	those	BDD	scripts	and	those	get	checked	in.	Once	they	get	checked	in,	the	
developer's	job	is	to	actually	check	those	out,	and	to	run	them	on	the	machine,	
and	to	work	to	actually	make	those	tests	pass.	The	other	thing	that's	going	on	in	
this	work	is	that	often	the	tester	is	doing	some	exploratory	testing	as	pieces	of	
the	application	itself	are	completed	or	as	the	developer	is	wrapping	up,	or	
getting	close	to	wrapping	up.	Since,	sometimes,	the	tester	and	the	developer	
get	together	and	do	some	exploratory	testing.	

	 So,	in	this	world,	other	types	of	testing	are	shared	by	everybody.	Things	like	
visual	inspection	of	the	app	or	UI	as	we're	building	it.	Things	like	accessibility.	
These	sort	of	things	don't	belong	to	the	tester,	they	don't	belong	to	the	
developer.	They	belong	to	both	of	them,	or,	actually	the	whole	team.	So,	
imagine	that	the	developer	finally	has	got	that	last	acceptance	test	to	pass,	
they've	checked	that	code	in,	it's	going	down	the	pipeline,	they	might	say	to	the	
tester	"Hey,	what's	left	on	this	story?"	Because,	he's	not	done.	There	is	no	done	
done.	The	tester	might	say	"You	know,	I	haven't	gotten	around	to	looking	at	this	
from	an	accessibility	standpoint."		The	developer	says	"It's	okay,	I'll	pick	it	up"	
and	he'll	fire	up	Jaws	and	play	the	screen	back,	or	whatever	it	might	be	so	the	
tester	and	developer	are	talking	together	to	make	sure	that	everything	that	
needs	to	be	tested	is	handled.	The	way	that	they	do	this	is	yes,	they	have	to	talk	
with	each	other.	They	kind	of	share	this	shared	goal	of	preventing	defects.	So,	
that	is	the	essence	of	what	acceptance	test	driven	development	is	for	me.	

	 The	next	design	pattern	we're	going	to	look	at	is	page	objects.	You	may	have	
heard	about	those	before.	So,	this	one	is	a	coding	thing.	So,	yes.	I've	got	to	get	
back	on	the	keyboard	here	in	just	a	second.	So,	we	know	for	a	fact	that	the	
application	is	going	to	change.	In	fact,	most	people	in	development,	that's	their	
job	to	bring	about	that	change.	So,	the	challenge	is	how	do	we	make	it	so	that	
whenever	it	changes,	it's	easy	for	us	to	maintain	the	code.	Yes,	we	know	that	
the	tests	will	break,	how	is	it	to	fix?	I	like	to	say	that	it's	okay	if	a	lot	of	tests	
break,	but	it's	not	okay	if	I	have	to	go	to	a	lot	of	places	to	change	it.	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 6 of 13

	 Now,	if	you're	following	this	ATDD	practice	that	we	talked	about	before,	
whenever	we	make	a	change,	we	actually	start	by	modifying	the	test	or	adding	a	
new	test.	We	kind	of	drive	from	there.	But,	there	are	some	cases	where	a	
change	we	weren't	aware	of	and	it	comes	in,	and	it	breaks	a	lot	of	tests.	What	
we	need	to	do	is	learn	from	the	development	community,	where	they've	come	
up	with	these	really	good	design	patterns	that	allow	them	to	separate	out	things	
like	model	view	controller	and	there	are	several	others	that	are	out	there	where	
we	learn	where	each	thing	in	our	test	suite,	or	in	our	automation	code,	has	a	
place	and	one	place	only.		

	 With	that,	I	guess	that's	enough	talking	about	it.	Let	me	go	out	and	break	some	
code.	Let	me	pop	over	to	do	that	right	now.	Okay,	so	let's	start	off	where	we	left	
off.	As	you	can	see,	I've	got	pages	created	for	the	homepage,	the	details	page,	
and	the	shopping	cart	page	already.	I	didn't	want	to	bore	you	with	a	lot	of	the	
details,	but	I	did	want	you	to	see	it.	I'm	going	to	start	by	creating	a	new	page	
object	for	the	checkout	page.	I'm	going	to	include	the	page	object	gem	here,	
and	all	I	need	to	do	at	this	point	is	just	start	to	define	the	different	elements	
that	are	on	that	page.	So,	I've	got	this	text	field.	The	text	area,	the	address,	and	
I've	got	another	text	field,	where	we	have	the	email.	Let's	put	that	in.	The	select	
list,	or	the	pay	type	dropdown,	and	the	button	that's	at	the	bottom.	Set	it	in	
place.	Order	...		

	 And,	with	that,	I'm	going	to	kind	of	jump	over	now	and	...	Let	me	make	sure.	
Yeah,	okay.	I'm	going	to	jump	over	and	update	my	steps	now.	Some	of	these	are	
going	to	be	using	the	existing	page	objects.	So,	I'm	going	to	start	by	just	visiting	
the	homepage.	Let	me	get	rid	of	all	of	this	for	this	next	one.	You	can	see	that	I'm	
basically	going	to	be	calling	methods	on	the	page	objects	that	are	in	turn	going	
to	do	what's	necessary	to	complete	that	task.	I	literally	am	extracting	that	away	
inside	of	the	page	object,	so	out	here,	I	don't	know	what's	happening,	what	I'm	
interacting	with.	I'm	just	simply	calling	methods	in	the	page	as	hidden,	
everything	away.		

	 For	the	checkout,	I've	got	several	things	to	do.	So,	I'm	going	to	use	a	slightly	
different	form	that	I'm	passing	with	lock.	I'm	going	to	go	ahead	and	set	all	of	the	
values	that	I	need.	Again,	this	looks	like	I'm	just	setting	some	properties.	The	
page	object	itself	has	abstracted	away	the	details	of	what's	going	on	there.	So,	
let's	select	something	from	the	dropdown,	and	let's	click	that	button.	Okay,	
great.	Now,	here,	I'm	going	to	use	a	sense	variable	current	page	that	this	page	
object	jump	keeps	track	of.	So,	I'm	going	to	basically	see	all	the	current	page	
text.	I	think	with	that,	I	think	I've	got	the	first	test	converted	over	to	using	page	
objects.	Let's	run	it	just	to	be	sure.	Let's	see	what	we	come	up	with.	And,	it	
worked.	Excellent.		

	 Let's	go	back	to	the	second	test.	I	want	to	delete	all	of	this	and	I	want	to	copy	
this	down	here	a	little	bit.	I	still	have	to	handle	setting	one	of	these	two	blank.	
I'm	going	to	use	a	little	bit	of	Ruby.	I'm	going	to	actually	send	a	message	by	
doing	that	dynamically	goading	it	out	using	whatever	the	field	is	and	say	what	
the	field	equals.	So,	if	that's	a	name,	it's	going	to	call	the	name	equals	method,	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 7 of 13

et	cetera.	Now	I'm	setting	it	up	to	blank.	For	the	error,	I	want	to	go	over	to	my	
page	object	and	put	here	the	knowledge	of	how	to	find	those	errors.	So,	I'm	
going	to	again,	declare	that	div	and	I'm	going	to	call	it	error_explanation.	Then,	
for	the	unordered	list,	I'm	going	to	use	a	little	bit	different	notation.	I'm	going	to	
pass	the	block,	and	here,	I'm	going	to	say	start	by	looking	inside	of	that	div,	the	
error	container	element,	that	div.	Inside	of	there,	find	the	unordered	list,	and	
that's	it.	With	that,	I	can	now	go	back	over	here	and	I	want	to	get	rid	of	that.	So,	
now	I	want	to	say	on	my	checkout	page,	.errors,	and	that	should	return	the	text	
for	me.	It's	going	to	run	these	tests.	I've	got	to	make	sure	that	they're	fine.	And,	
that	one's	good.	Let's	run	the	address.	Excellent.	

	 I	have	one	more	to	go	and	I'm	checking	out.	I	just	basically	need	to	get	to	the	
checkout	page.	So,	we'll	use	this	to	do	that.	Okay.	So,	how	do	I	want	to	go	about	
this?	Delete	the	old.	I'm	going	to	add	a	new	method	to	my	checkout	page.	It's	
called	payment	options.	Here,	I'm	just	going	to	return	that	array	of	text.	So,	I've	
got	the	select	list,	pay_type.	So,	I	want	to	get	the	options	from	that	and	I	want	
to	collect	the	test	from	each	of	those.	Now,	I	should	just	simply	be	able	to	get	
that	value	returned	from	the	page	object.	Let's	run	it.	And,	as	you	could	see,	
that	test	worked,	as	well.	The	page	object	really	helps	us	hide	the	details,	
abstract	away	the	implementation	from	the	HTML.		

	 Okay.	Here	we	are	back	over	in	slide	land	again,	away	from	the	code,	so.	Yes.	So,	
let's	get	on	to	the	next	design	pattern.	This	is	another	coding	design	pattern.	It's	
called	Default	Data.	Let's	talk	about	this	a	little	bit.	Our	tests	tend	to	need	a	lot	
of	data.	In	this	specific	case,	I'm	talking	about	the	data	that	we	use	to	drag	
through	the	front-end.	So,	in	other	words,	the	data	that	we	use	to	fill	out	forms	
or	to	make	decisions	around	what	things	are	selected,	or	whatever	it	might	be.	
But,	the	fact	is	that,	the	majority	of	the	data	that	we	have	to	provide	for	any	
specific	test	doesn't	matter.	In	other	words,	of	all	the	data	that	we	have	to	
provide,	it	usually	is	a	very	small	subset	of	that	data	that	actually	changes	the	
outcome	of	our	test.	So,	this	is	the	design	pattern	that	I	first	kind	of	discovered	
when	I	was	working	a	large	data	warehousing	project,	where	it	was	an	ETL	type	
project	where	we	were	reading	from	a	really	large	Oracle	data	store,	making	
some	manipulation	and	then	writing	it	ultimately	into	another	Oracle	data	
warehouse,	as	well.	

	 When	I	first	got	there,	the	way	that	it	was	being	tested	was	that	the	testers	
would	run	a	half	a	million	records	through	it	or	so	over	night,	every	night.	They	
would	come	in	the	next	morning	and	they	would	try	to	go	out	and	say	"Okay,	I	
want	to	test	this	thing"	and	they	would	go	out	and	run	some	queries	to	try	to	
find	a	record	that	matched	that.	And,	they'd	find	"Oh,	look,	I	found	one",	and	
then	they	would	kind	of	go	over	to	the	source	to	make	sure	that	the	thing	that's	
supposed	to	happen	actually	did	happen.	It	was	all	manual.	It	was	incredibly	
slow.	It	was	very	laborious	and	it	was	very	error	prone.	When	I	started,	one	of	
the	first	things	I	wanted	to	do	was	to	get	some	automation	around	it	and	I	
quickly	learned	that	the	data	source,	or	where	we	had	to	set	up	the	data,	was	
over	120	tables.	The	complexity	was	just	enormous,	but	over	time,	I	discovered	
that	whenever	we're	talking	about	specific	business	rules	triggering	inside	the	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 8 of 13

middle	of	this	pipeline,	each	of	those	business	rules	actually	only	looked	at	a	
very	small	subset	of	the	data.	

	 So,	in	that	case,	the	majority	of	the	data	that	was	in	there,	as	long	as	it	would	
flow	through	the	system,	it	didn't	really	matter.	So,	we	were	able	to	create	a	
little	test	harness	in	about	a	week	or	so	that	would	basically	blast	data	across	all	
those	tables.	It	had	some	reasonable	defaults,	but	the	tester	was	able	to	say	
"Take	this	subset,	blast	the	reasonable	defaults	across.	But,	in	this	specific	table,	
these	three	columns	need	to	be	this	exact	value	and	this	other	table,	these	two	
columns	need	to	be	this	exact	value.	It	worked	pretty	well.	It	just	so	happened	
that	the	next	company	that	I	went	to	work	for	after	that,	where	I	went	to	
consult,	I	was	working	on	a	web	app,	and	what	I	quickly	learned	was	exactly	the	
same	thing.	So	much	of	the	data	that	we	had	to	enter	didn't	really	matter.		

	 Now,	if	we	go	back	to	the	puppy	app	that	we've	been	playing	with	so	far,	so	far	
the	tests	that	I	have,	it	doesn't	matter	which	puppy	I	select.	The	first	test	where	
we're	going	all	the	way	through	to	see	the	thank	you	message,	again,	it	doesn't	
matter	what	value	I	put	in	the	name	field,	what	value	I	put	in	the	address,	et	
cetera.	If	you	think	about	the	second	and	third	test,	the	only	thing	that	really	
matters	there	is	that	the	field	that	I'm	testing	is	empty.	It	doesn't	matter	what's	
in	the	other	tests.	So,	this	is	the	idea	behind	default	data.	I	think	it's	time	to	go	
out	and	take	a	look	at	it.	With	that,	I'm	going	to	jump	from	slide	land	over	to	
code	land,	and	we're	going	to	write	some	code	for	this	again.	

	 Okay.	So,	let's	see	how	this	default	data	works.	So,	we're	starting	where	we	left	
off	again.	As	you	can	see,	I	don't	have	any	of	the	default	data	to	find	so	far,	so	
I'm	going	to	start	by	creating	a	new	file	that's	going	to	pull	my	default	data	or	at	
least	the	knowledge	of	it,	and	let's	just	call	it	checkout,	because	that's	sort	of	
what	we're	doing	here.	I'm	going	to	start	by	just	putting	the	same	values	that	
we've	been	using	so	far.	I've	declared	checkout	page,	I'm	setting	my	name,	and	
my	address,	the	email.	Now,	the	pay	type.	That's	all	I	want	to	do	at	this	time.	
We'll	come	back	to	this	in	just	a	moment.		

	 So,	I	want	to	jump	over	to	my	checkout	page	and	I'm	going	to	start	by	including	
the	Gem	data	magic,	which	is	going	to	do	some	magic	for	us.	I'm	now	going	to	
add	a	new	method	called	checkout.	Let's	start	just	like	this.	I'm	going	to	use	
some	built-in	methods	from	the	page	object	Gem	that	know	how	to	work	with	
data	magic	where	I'm	basically	going	to	say	"Populate	the	page	with	data	for	
checkout	page."	That	will	get	all	of	that	data	and	automatically	populate	it	once	
I'm	finished.	I	just	need	to	click	the	place	order	button.	With	that,	let's	go	over	
to	our	steps.	Let's	go	back	to	the	steps	for	that	first	test	and	let's	clear	it	up,	or	
clean	it	up	a	bit.	Here's	where	the	checkout	is,	I	can	get	rid	of	all	of	this	code,	
and	just	simply	say	"Checkout".	That	should	take	care	of	it.	Let's	run	the	test	and	
see	if	I'm	right.	It	looks	like	something	is	happening	here.	Yes,	something	is	
definitely	happening.	I'm	just	going	to	let	it	fail,	so	I	can	kind	of	take	a	look	to	
see	what's	going	on.	Yes,	it	failed.	I	forgot	to	specify	which	data	magic	file	I	
wanted	to	use.	I'm	going	to	put	an	annotation	on	this	test	to	tell	it	to	use	that	
checkout	file	that	we	defined.	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 9 of 13

	 Now,	it	should	work.	Yes,	okay.	As	you	saw,	it	populated	that	page	properly.	I	
think	we're	good	there.	Let's	go	back	to	this	next	one.	Here,	as	you	remember,	
I've	got	to	deal	with	setting	them	to	an	empty	value.	I'm	going	to	go	back	to	my	
checkout	page	and	I'm	going	to	pass	some	data	that	I	want	a	default	to	empty	
and	for	data,	I'm	going	to	pass	an	additional	parameter,	which	will	actually	
merge	that	value	with	the	data	that	it	gets	from	data	magic.	Now,	in	my	steps,	I	
can	simply	say	"Checkout",	but	now	I'm	going	to	tell	it	which	values	I	want	to	
override.	It's	going	to	be	the	value	that	it's	to	fill,	and	I	want	to	set	it	just	to	an	
empty	string.	Now,	let's	try	to	run	this	test.	Let's	see.	I	made	the	same	mistake	
again.	Okay.	That's	fine.	I	definitely	need	to	wake	up	here,	but	let's	write	this	
code.	Actually,	you	know,	every	test	here	is	going	to	need	this,	so	I'm	just	going	
to	put	it	at	the	feature	level,	and	that	will	apply	it	to	every	single	test	that's	
here.	Every	test	is	going	to	use	that	same	file.	Now	I	can	run	it	and	I	won't	have	
to	worry	about	remembering	it	next	time.	

	 Let's	see	what	happens	this	time.	Good.	And,	the	address	...	Good.	Alright,	it's	all	
good.	I've	got	one	more	to	go.	Although,	I	want	to	show	you	something.	If	the	
data	truly	is	default,	it	shouldn't	matter	what	values	go	into	it.	So,	this	data	
magic	Gem	has	built	into	it	the	ability	to	say	"Just	randomize	the	data	for	me"	
and	it	has	all	these	built-in	methods	to	kind	of	deliver	up	things.	For	the	pay	
type	dropdown,	I	can't	just	say	anything	and	have	it	randomize.	I've	got	to	have	
only	the	options	that	are	in	that	dropdown.	I'll	just	go	ahead	and	mention	also,	
that	this	gem	is	fully	extendable,	so	you	can	very	easily	define	your	own	types.	
I'm	just	going	to	put	a	little	sleep	here,	so	that	when	I	run	it,	you	can	actually	see	
what	data	it's	putting	in	there,	because	I	think	it's	kind	of	interesting	to	see.	
Let's	run	it.	Look	at	that,	huh?	Nice.	Let	me	run	it	again,	just	so	you	can	see	that.	
Each	time,	it's	bringing	wholly	unique	data.	The	internet	is	a	little	slow	at	the	
moment.	Oh	well.	And,	there	you	have	it.	That's	really	all	there	is	to	the	default	
data.	Let	me	go	take	this	sleep	out	of	here,	so	that	I	don't	have	that	going	
forward.	And,	okay.	So,	there	we	have	it.	

	 Now,	let's	talk	about	the	next	pattern,	and	the	next	pattern	is	test	data	
management.	I	think	this	is	one	of	the	largest	things	that	our	industry	still	needs	
to	tackle	right	now.	Let	me	give	some	context	here.	So	many	people	have	lots	of	
tests	that	they	run.	They	might	kick	them	off	overnight	and	then	they	come	in	
the	next	day	and	look	at	all	the	ones	that	have	failed,	and	ask	themselves	"Did	
this	fail,	because	there's	some	problem	with	the	application?	Or,	did	they	fail,	
because	somebody	messed	with	my	data?"	So	many	places,	they	put	lots	of	
data	in	shared	environments	where	lots	of	teams	are	left	for	themselves	to	try	
to	fend	out	to	find	the	data	that	they	need	to	use,	and	they	tend	to	step	on	each	
other.	So,	test	data	management	is	all	about	getting	that	right.	Test	data	
management	is	all	about	every	time	I	request	some	data	from	the	backend,	the	
application	requests	the	data,	that	it	comes	up	in	exactly	the	form	that	I	need	it.	
So,	if	I	need	an	account	with	exactly	$39	in	the	account,	when	I	request	it,	it	
comes	to	$39.	Even	if	my	test	reduces	that	by	withdrawing	some	money,	and	
the	same	test	runs	a	couple	minutes	later,	when	it	comes	back	it	needs	to	come	
back	with	$39.	In	other	words,	precision.	I	always	need	to	get	exactly	what	I	
want.		

Jeff 'Cheezy' Morgan - Patterns of Automation Page 10 of 13

	 I	believe	this	is	something	that	we	haven't	solved	well	in	the	industry	and	I	think	
that	we	need	to	do	a	much	better	job.	I've	got	a	couple	of	little	design	patterns	
I'm	going	to	talk	about.	The	first	one	is	what	I	think	is	the	best	pattern	where	
our	test	begins.	As	soon	as	the	test	begins,	it	actually	goes	out	and	creates	the	
data	that	we	need	for	that	test,	that	test	only.	That	test	executes.	As	soon	as	
that	test	finishes,	it	removes	the	test	data	for	that	test	and	continues.	Another	
option	that	I've	seen	people	use	is	where	all	of	the	data	for	all	of	the	tests	is	
inserted	upfront.	All	the	tests	are	executed	and	then	at	the	end,	all	of	them	are	
removed.	All	the	data	is	removed.	Now,	there	are	trade-offs	between	these	two.	
The	reason	I	say	that	the	first	one	is	better	is	because	it	tends	to	require	fewer	
environments.	The	second	one,	whenever	we're	doing	these	large	loads	and	
these	large	cleanups,	tend	to	step	on	it	so	that	it's	hard	to	have	one	
environment	where	lots	of	lots	of	teams	could	be	running	their	tests	together.		

	 Secondly,	the	first	one,	if	there's	a	problem,	it's	much	easier	to	try	to	trace	it,	
because	the	data	that	the	test	needs	is	there	with	the	test	itself.	The	second	
option,	if	we	build	something	out	like	that,	and	we	have	an	issue,	we	have	to	
usually	go	to	another	system	or	another	place	to	try	to	know	and	understand	
what	data	was	in	there.	This	tends	to	be	a	whole	lot	easier	to	build	something	
custom	that	fits	in	the	first	one.	Now,	what	do	we	do	if	we	have	a	case	where	
we've	got	a	backend	that	we	have	no	access	to	whatsoever?	There's	a	couple	of	
classic	examples	of	this.	One	of	them	is	if	we're	making	a	call	to	third-party	
services.	Let's	say	there's	a	company	that	provides	that	some	service	that	our	
company	uses,	and	we	make	a	request	to	there,	but	clearly	they're	not	going	to	
allow	us	to	modify	or	write	data	into	their	test	environment.	So,	somehow,	
we're	going	to	have	to	either	accept	the	fact	that	we're	not	sure	what	we're	
going	to	get.	We're	not	sure	if	their	service	is	going	to	be	up	or	down.	And,	last	
but	not	least,	the	data's	gone	completely	volatile.		

	 Another	example	that	you	see	in	some	large	companies	is	where	there	might	be	
some	backend	that's	owned	by	a	different	group	and	they're	not	going	to	allow	
you	to	access	it.	The	traditional	one	is	a	mainframe	group	where	they	believe	
that	their	job	is	to	kind	of	protect	the	company	from	you	as	a	tester.	So,	they're	
not	going	to	let	you	write	data	directly	into	it.	Another	use	case	might	be	where	
we've	built	a	front-end,	and	the	service	that	we	need	to	call	isn't	quite	available.	
The	backend	is	not	quite	there,	yet.	In	all	these	cases,	using	service	virtualization	
tends	to	be	the	right	approach.	What	these	are,	is	these	are	just	fake	services,	if	
you	will,	that	stand	in	and	deliver	up	the	data	that	our	test	needs,	whenever	the	
backend	is	totally	volatile.		

	 Now,	something	that	I	find	that	is	really,	really,	really	important	is	to	not	repeat	
the	data.	What	I	mean	by	that	is,	do	not	use	the	same	account	repeatedly	across	
all	of	your	tests,	because	you	have	some	tests	that	are	going	to	make	changes	to	
that,	and	it	just	becomes	quite	difficult.	What	I	find	is	that	using	different	data	
across	different	tests	tends	to	make	things	a	little	bit	simpler	whenever	we	run	
into	situations	where	we	have	issues.	Let's	take	another	example	that	goes	
along	with	this.	What	happens	if	we	have	a	test	that	has	to	start	with	an	account	
in	a	specific	shape,	and	that	test	makes	some	changes	and	leaves	it	in	a	second	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 11 of 13

shape?	And,	we	have	another	test	later	that	expects	something	in	that	second	
shape.	Well,	we	shouldn't	try	to	reuse	that	data.	Again,	the	challenge	is	as	we	
scale	up	our	tests,	we	usually	parallelize	these	significantly.	So,	we	really	lose	
control	of	the	order	in	which	these	run.	So,	if	we're	using	the	same	data,	we're	
undoubtedly	going	to	have	multiple	tests	that	try	to	use	the	same	data	at	the	
same	time,	or	the	order	is	going	to	be	in	an	order	that	we	don't	expect.	

	 The	next	design	pattern	that	I	want	to	talk	to	you	about	is	one	that	called	wrap	
navigation.	Think	about	it,	all	of	our	tests,	a	very	significant	portion	of	our	tests	
have	to	navigate	through	pages.	They	have	to	start	at	some	place	and	navigate	
to	the	point	where	we're	actually	beginning	our	tests.	This	is	something	that's	
very,	very	common.	What	I	tend	to	not	like	to	do	is	pepper	this	idea	throughout	
my	code.	I	like	to	kind	of	extract	that	into	one	place	and	have	only	one	place	
where	I	have	to	go	if	that	changes.	In	other	words,	if	the	path	or	what	I	have	to	
do	to	get	to	the	new	page	changes,	I	want	to	go	to	one	place.	And,	it	also	goes	a	
long	way	to	simplify	our	coding	cleaning	it	up.	So,	let's	switch	out	of	slide	land	
and	go	over	to	code	land.	Let's	take	a	look	at	what	this	looks	like.		

	 Okay.	So,	routes.	Let's	start	by	creating	a	new	file	and	in	this	file,	I'm	going	to	
define	my	routes	which	simply	is	a	hash,	requires	an	entry	of	default,	because	if	
you	don't	specify	which	routes	you	use,	it's	going	to	by	default,	use	a	route	
called	default.	Isn't	that	clever?	All	I'm	doing	now	is	just	defining	a	series	of	class	
names	and	methods	to	invoke.	It's	going	to	have	the	knowledge	to	walk	through	
that,	to	new	up	those	classes	and	to	cull	the	methods	that	are	there.	Let	me	put	
these	in	here.	There's	shopping	cart	and	the	last	one	is	checkout.	In	this	case,	
I'm	only	creating	one	for	default.	I	can	have	as	many	routes	in	here	as	I	want.	If	I	
wanted	to	provide	a	parameter	for	the	method,	I	could	do	it	simply	like	this.	
But,	in	our	case,	we	don't	need	to	do	that	so	I'm	just	going	to	bypass	that	right	
now.	Let's	go	to	the	step	definitions.	Let's	start	with	the	first	test	here.	Basically,	
really,	what	I	want	to	do	is	to	navigate	out	to	that	checkout	page.	In	fact,	this	
duplicates	the	route.	All	I	need	to	now	say	is	"Navigate	all",	because	it	will	go	
through	that	entire	route.	

	 And,	one	a	cleanup,	okay?	Let's	take	a	look	at	the	next	one.	So,	here,	I	want	to	
navigate	out	to	that	checkout	page,	but	when	I	get	there,	I	need	to	set	it	to	
blank	values.	So,	I'm	going	to	say	navigate	to	the	checkout	page.	And,	let	me	run	
that	one.	Great.	And,	the	address	will	work,	'cause	we've	only	changed	the	
routes.	This	next	one,	again,	what	we're	doing	is	we're	just	simply	navigating	to	
the	checkout	page.	If	I	can	type	it	right,	let's	do	that.	And,	let's	run	that	one.	
Now,	since	I'm	not	specifying	what	route	to	use,	it's	using	the	default	route.	But,	
what	if	I	wanted	to	use	a	different	route?	I	would	simply	say	"Navigate	to	this	
page"	using	whatever	I	named	the	other	route.	I	would	just	simply	say	it	just	like	
this.	Lots	of	flexibility	going	into	this	and	that	is	all	there	is.	

	 Now,	let's	go	to	the	next	one.	To	be	quite	honest,	what	I'm	about	to	show	you,	I	
think	is	one	of	the	most	important	take	aways	for	you	in	this	talk,	because	it's	
one	that	just	about	everybody	gets	wrong.	I	see	very	few	companies	who	get	
this	right.	It's	all	about	making	sure	that	we	test	the	right	thing	with	the	right	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 12 of 13

tool.	Everybody	has	seen	these	pyramids	before,	but	I'm	going	to	quickly	go	
through	and	talk	about	mine.	I	see	it	like	this.	I	see	that	unit	tests	are	at	the	
bottom.	These	things	called	integration	tests	are	at	the	middle.	And,	what	I	call	
user	tests	are	at	the	top,	which	are	the	automated	user	tests	and	also	
exploratory	testing.	I'm	going	into	each	of	these	in	just	a	moment	and	talk	about	
them,	but	let's	start	with	why	do	we	talk	about	these	three	different	places?	
What	is	it	that	I'm	talking	about?	Well,	to	be	quite	honest,	I	want	to	take	every	
single	test	and	push	it	as	far	down	that	pyramid	as	humanly	possible.	The	vast	
majority	of	the	application	should	be	test	in	unit	tests.		

	 Let	me	give	some	real	world	examples	here	of	what	I	mean.	These	come	from	
clients	that	I've	worked	with	in	the	past	or	some	that	I	work	with	right	now.	So,	I	
started	working	with	a	team	and	one	of	the	requirements	that	they	had	was	
that	whenever	you	navigate	to	this	specific	screen	that	has	a	lot	of	financial	data	
and	it's	kind	of	laid	out	in	tables.	If	one	of	the	dollar	values	was	negative,	that	
dollar	value	should	be	showed	with	a	red	font	and	it	should	have	a	special	
formatting.	So,	the	tester	had	written	some	automation	that	logs	in,	navigates	
out	to	this	page	using	an	account	that	they	knew	had	negative	values,	and	they	
checked	to	make	sure	that	the	font	was	red,	and	they	checked	to	make	sure	
that	the	special	formatting	was	applied.	Then,	of	course,	they	had	a	second	test	
that	did	the	same	thing,	except	with	an	account	that	they	knew	had	a	positive	
value	there,	and	they	checked	to	make	sure	that	it	did	not	have	that	red	font,	
and	that	it	didn't	have	that	special	formatting.	What	did	I	do	when	I	started	
working	with	them?	Well,	we	deleted	both	of	those	tests,	'cause	those	tests	
were	not	valid	tests	to	be	running	through	the	UI.	

	 You	see,	it	was	java	script	that	was	applying	the	style	that	turned	it	red.	And,	it	
was	java	script	that	was	doing	the	formatting	for	the	display.	So,	those	tests	
needed	to	be	written	as	unit	tests.	Taken	this	way,	what	you	find	is	that	we	have	
far	more	unit	tests	than	anything	else,	and	in	fact,	those	tests	that	are	at	the	top	
of	the	period,	there	actually	ends	up	being	very	few.	Those	tend	to	cast	more	
larger	tests	that	we	can't	test	in	the	other	two	layers.	Things	that	are	larger	
business	rules.	Things	that	are	more	about	the	core	behavior	of	the	system.	So,	
it	is	so,	so	important	to	get	this	right.	What	I	find	is	that	teams	where	the	
developers	and	testers	don't	work	close	together,	the	testers	tend	to	try	to	
automate	everything	up	at	this	top	level,	and	what	they	end	up	with	is	
thousands	and	thousands	of	brittle,	brittle	tests.		

	 The	client	that	I'm	currently	working	with,	when	I	started	there,	they	had	over	
40,000	tests	that	ran	through	the	UI.	We're	now	down	to	about	6,000,	because	
we've	been	deleting	the	ones	that	shouldn't	be	there.	I	can	tell	you	when	this	
process	is	finished,	we'll	probably	be	at	about	2,000	tests.	Maybe	even	under	
that.	And,	this	is	a	pretty	sizable	app.	Let's	talk	about	each	of	these.	Unit	tests,	
here's	just	some	example	of	what	an	app	might	look	like.	You've	got	your	user	
interface,	you've	got	your	services,	you've	got	some	backend	data	store,	or	
something	like	that.	A	unit	test	literally	is	taking	one	of	these	little	classes	or	one	
of	these	little	small	pieces	of	code,	and	testing	an	incredibly	granular	piece	of	
functionality.	For	example,	this	dollar	value	is	formatted	properly	when	it's	

Jeff 'Cheezy' Morgan - Patterns of Automation Page 13 of 13

negative.	The	same	thing	would	happen	in	the	services	layer.	These	are	the	tests	
that	test	the	majority	of	your	application.	

	 Now,	these	little	classes,	or	these	little	code	snippets	don't	work	in	isolation	and	
sometimes	they	collaborate	with	other	classes	to	do	something	that's	a	little	bit	
larger.	Now,	we're	still	not	talking	end	to	end.	These	are	what	I	call	the	
integration	tests	and	it's	kind	of	how	two,	three,	or	four	of	these	sort	of	work	
together	to	perform	a	little	bit	larger	action.	I	like	to	pull	those	tests	together,	as	
well.	And,	last	but	not	least,	there	are	more	of	our	through	the	UI	tests,	the	
ones	that	run	end	to	end.	So,	of	all	the	tests	that	we've	been	writing	today,	
there's	actually	none	of	them	that	should	have	been	written	through	the	UI.	
Yes,	I've	written	them	through	the	UI	so	that	I	had	examples	to	show	you	some	
of	these	design	patterns,	but	every	one	of	those	could	have	been	written	as	a	
unit	test	and	test	that	behavior.	

	 So,	what	are	the	patterns	that	we've	talked	about	today?	We	started	by	talking	
about	specification	by	example.	We	talked	about	acceptance	test	driven	
development.	We	talked	about	page	object	and	how	that	works.	We	saw	some	
code	for	that.	We	talked	about	default	data	and	we	saw	code	of	how	that	
works,	as	well.	Test	data	management,	route	navigation,	and	writing	the	right	
tests	at	the	right	level	of	the	pyramid.	All	of	these	are	things	that	I	use	at	just	
about	every	team	that	I	work	with.	And,	above	all,	keep	your	automation	code	
clean,	and	please,	please,	please	do	not	automate	too	much.	

	 Thank	you	very	much.	I	hope	you	got	something	out	of	this	talk.	If	you'd	like	to	
reach	out	to	me,	here's	my	email	address	and	my	Twitter	handle.		

	

	

